RM Carneiro Neto, A Akhavan-Safar, EM Sampaio, BD Simões, LL Vignoli, LFM da Silva
{"title":"粘合剂粘接接头的蠕变行为:全面回顾","authors":"RM Carneiro Neto, A Akhavan-Safar, EM Sampaio, BD Simões, LL Vignoli, LFM da Silva","doi":"10.1177/14644207241233889","DOIUrl":null,"url":null,"abstract":"This review paper provides an exploration of various facets of creep behaviour in adhesives and adhesive joints, encompassing experimental procedures, prediction models, influential parameters and strategies to enhance resistance. The discussion extends to the interplay between fatigue and creep, emphasising recent advances over the last two decades. While avoiding redundancy with prior work on temperature and moisture degradation, the paper articulates connections between topics for a better understanding. A critical examination of load levels reveals that small variations significantly impact the creep life of adhesive joints, particularly prominent with epoxy adhesives. The adhesive type, joint geometry and substrate material are scrutinised, revealing distinct impacts on creep behaviour. The study underscores the critical role of adhesive thickness and overlap length, emphasising their relevance in determining the time to failure in bonded joints under creep conditions. Notably, the substrate material’s role is highlighted. As the review delves into unexplored dimensions, it calls for further research to bridge existing gaps and refine our understanding of tertiary creep and time until failure.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"8 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creep behaviour of adhesively bonded joints: A comprehensive review\",\"authors\":\"RM Carneiro Neto, A Akhavan-Safar, EM Sampaio, BD Simões, LL Vignoli, LFM da Silva\",\"doi\":\"10.1177/14644207241233889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review paper provides an exploration of various facets of creep behaviour in adhesives and adhesive joints, encompassing experimental procedures, prediction models, influential parameters and strategies to enhance resistance. The discussion extends to the interplay between fatigue and creep, emphasising recent advances over the last two decades. While avoiding redundancy with prior work on temperature and moisture degradation, the paper articulates connections between topics for a better understanding. A critical examination of load levels reveals that small variations significantly impact the creep life of adhesive joints, particularly prominent with epoxy adhesives. The adhesive type, joint geometry and substrate material are scrutinised, revealing distinct impacts on creep behaviour. The study underscores the critical role of adhesive thickness and overlap length, emphasising their relevance in determining the time to failure in bonded joints under creep conditions. Notably, the substrate material’s role is highlighted. As the review delves into unexplored dimensions, it calls for further research to bridge existing gaps and refine our understanding of tertiary creep and time until failure.\",\"PeriodicalId\":20630,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14644207241233889\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241233889","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Creep behaviour of adhesively bonded joints: A comprehensive review
This review paper provides an exploration of various facets of creep behaviour in adhesives and adhesive joints, encompassing experimental procedures, prediction models, influential parameters and strategies to enhance resistance. The discussion extends to the interplay between fatigue and creep, emphasising recent advances over the last two decades. While avoiding redundancy with prior work on temperature and moisture degradation, the paper articulates connections between topics for a better understanding. A critical examination of load levels reveals that small variations significantly impact the creep life of adhesive joints, particularly prominent with epoxy adhesives. The adhesive type, joint geometry and substrate material are scrutinised, revealing distinct impacts on creep behaviour. The study underscores the critical role of adhesive thickness and overlap length, emphasising their relevance in determining the time to failure in bonded joints under creep conditions. Notably, the substrate material’s role is highlighted. As the review delves into unexplored dimensions, it calls for further research to bridge existing gaps and refine our understanding of tertiary creep and time until failure.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).