Danial Kordzangeneh, Hadi Khoramishad, Amir Reza Fatolahi
{"title":"Post-creep residual tensile properties of multi-walled carbon nanotube/epoxy nanocomposites","authors":"Danial Kordzangeneh, Hadi Khoramishad, Amir Reza Fatolahi","doi":"10.1177/14644207241239587","DOIUrl":"https://doi.org/10.1177/14644207241239587","url":null,"abstract":"Epoxy resin as a thermoset polymer is vulnerable to creep loading even at room temperature due to its viscoelastic nature. This study investigated the effect of reinforcing epoxy resin with different functionalized multi-walled carbon nanotubes (MWCNT) contents on the creep response and post-creep residual tensile properties of nanocomposites. The creep tests were performed on the nanocomposite specimens containing different filler contents and the neat epoxy specimen at 40°C under a constant load level of 200 N. It was found that the nanocomposites containing 0.3 wt% MWCNTs experienced 29.6%, 69.1%, and 74.1% decreases in the elastic strain, creep strain, and steady-state creep strain rate, respectively, compared to the neat epoxy. Furthermore, the tensile strength and stiffness of the neat epoxy and nanocomposite specimens were evaluated before and after a partial creep test (at a load level of 200 N for 150 min) by conducting tensile tests. The nanocomposites containing 0.3 wt% MWCNTs demonstrated considerable improvements of 35.9%, 41.2%, 27.9%, and 28.1% in strength, residual strength, stiffness, and residual stiffness, respectively, compared to the neat epoxy. Furthermore, scanning electron microscopy assessment was utilized to investigate the fracture surfaces of the nanocomposite specimens.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"31 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luís Aser Portela, Etienne Copin, M Fátima Vaz, Augusto M Deus
{"title":"Modelling and characterization of novel honeycomb structures with mass gradient produced by additive manufacturing","authors":"Luís Aser Portela, Etienne Copin, M Fátima Vaz, Augusto M Deus","doi":"10.1177/14644207241238429","DOIUrl":"https://doi.org/10.1177/14644207241238429","url":null,"abstract":"The dissemination of additive manufacturing methods has facilitated the design and production of complex structures which have a high strength-to-weight ratio. Cellular materials such as honeycombs have low-weight and high capacity to absorb energy which makes them desirable for the aerospace and automotive industries. The present work covers the study and comparison of metal-based regular honeycombs and functionally graded honeycombs. The latter encompass radial and linear/longitudinal gradients. Three repeating unit cells were studied: regular hexagons, Plateau and lotus. The structures were produced in aluminium using the laser powder bed fusion technique. Selected samples were submitted to a stress-relieving heat treatment. Numerical and experimental methods were used to assess the in-plane compressive properties. Finite element analysis was used to obtain the simulated force–displacement curves of each structure, allowing for the calculation of specific stiffness, absorbed energy and yield strength. The experimental method consisted of the compression of three specimens of three types of regular structures with and without stress-relieving heat treatment. The heat treatment reduced the yield strength and stiffness whilst increasing the ductility of the samples. The mechanical behaviour of the structures was found to depend upon a combined effect of the type of gradient, relative density, and unit cell structure. The results showed that an increase in the relative density would enhance the specific mechanical properties. The lotus configuration displayed the highest specific mechanical properties, as its geometry reduces the stress concentrations. The numerical results showed a reasonable match with the experimental results.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"12 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lan Ngoc Nguyen, Van Quyet Truong, Dong Van Dao, May Huu Nguyen, Trung Tran
{"title":"Effects of rejuvenators and aging conditions on the properties of blended bitumen and the cracking behavior of hot asphalt mixtures with a high RAP content","authors":"Lan Ngoc Nguyen, Van Quyet Truong, Dong Van Dao, May Huu Nguyen, Trung Tran","doi":"10.1177/14644207241236901","DOIUrl":"https://doi.org/10.1177/14644207241236901","url":null,"abstract":"The utilization of Reclaimed Asphalt Pavement (RAP) in asphalt pavement has obtained global popularity because of its cost-efficiency, technical advantages, and positive environmental influence. However, incorporating RAP requires careful consideration of cracking resistance because of the existence of age hardening of bitumen in RAP. For the mixtures containing high RAP contents, rejuvenators are often applied to enhance the performances of aged bitumen and the cracking of mixtures. This research aims to evaluate the effects of different rejuvenators on the rheological properties of bitumen and the cracking resistance of the mixture under short and long-term aging conditions. To achieve this goal, three rejuvenators - namely, RA1 (petroleum-based), RA2 (waste vegetable oil-based), and RA3 (modified soybean oil-based) were evaluated at contents of 0%, 4%, 12%, and 20%, respectively. The dynamic shear rheometer (DSR) test results show that, under unaged and rolling thin-film oven (RTFO) aging conditions, blended bitumen with RA1 and RA3 have higher G*/sinδ than RA2. Conversely, under pressure aging vessel (PAV) aging conditions, blended bitumen with RA1 and RA3 has lower G*sinδ than that with RA2. Regarding the cracking resistance, the indirect tension asphalt cracking test results show that, under short-term oven aging (STOA) conditions, the mixture using RA2 and RA3 has a higher cracking tolerance index (CT<jats:sub>Index</jats:sub>) than the one with RA1. However, under long-term oven aging (LTOA) conditions, the mixture using RA1 has the highest CT<jats:sub>Index</jats:sub> value. In addition, the high correlations between G*sinδ with CT<jats:sub>Index</jats:sub> and post-peak slope (|m<jats:sub>75</jats:sub>|) and between the CT<jats:sub>Index</jats:sub> and |m<jats:sub>75</jats:sub>| are observed.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"60 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An experimental investigation on feasibility of submerged ultrasonic spot welding of thermoplastics","authors":"Sandeep Bose, Hussain Mohamed Chelladurai, Ponappa Kanaiyaram","doi":"10.1177/14644207241239475","DOIUrl":"https://doi.org/10.1177/14644207241239475","url":null,"abstract":"Although conventional methods such as mechanical fastening, adhesive bonding and hot air welding have proven effective in dry conditions, they exhibit diminished efficacy in submerged environments. Hence, a thermoplastic welding technique with minimal dependence on surrounding media is essential. Ultrasonic spot welding (USW) represents a promising approach to thermoplastic joining, offering high efficiency and low operating costs. In this study, we investigate the efficacy of water-submerged ultrasonic spot welding (S-USW) for joining amorphous polyvinyl chloride (PVC) to PVC and semi-crystalline polypropylene (PP) to PP under submerged conditions. Our experimental results show that S-USW leads to a remarkable 39% and 21% increase in lap-shear strength for PVC/PVC and PP/PP welds, respectively, as compared to traditional USW techniques. We corroborate these findings with additional metrics such as Shore-D hardness tests, optical microscopy and scanning electron microscopy imagery, which collectively confirm the improved efficacy of S-USW over USW for joining PVC and PP.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"95 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gokulkumar Sivanantham, Thyla Pudukarai Ramaswamy, Sathish Selvaraj, Aravindh Murugan, Felix Sahayaraj Arockiasamy, Sasi Kumar Mani, Md. Elias Uddin
{"title":"Adapting a phenomenological model for predicting acoustical behaviour of Camellia sinensis/Ananas comosus/E-glass fibre-blended epoxy hybrid composites","authors":"Gokulkumar Sivanantham, Thyla Pudukarai Ramaswamy, Sathish Selvaraj, Aravindh Murugan, Felix Sahayaraj Arockiasamy, Sasi Kumar Mani, Md. Elias Uddin","doi":"10.1177/14644207241237736","DOIUrl":"https://doi.org/10.1177/14644207241237736","url":null,"abstract":"Developing a hybrid phenomenological model for predicting the sound absorption coefficient of a pineapple leaf fibre/waste tea leaf fibre/glass fibre/epoxy-based natural fibre-reinforced hybrid composites is the predominant topic of this article. Phenomenological models excel at extrapolating characteristic impedance and wave number whereas empirical models require fewer inputs but overlook wave propagation in pores. Existing models apply only to single-fibre-reinforced composites, necessitating the creation of a hybrid model for hybrid composites. The developed hybrid Zwikker–Kosten and Johnson–Champoux–Allard model shows good agreement with experimental data across the frequency range, with standard deviations of 0.001–0.029 and percent deviations of 1.11%–11.43%. The overall noise reduction coefficient between the model and experiments is 0.31 vs. 0.30, with a 3.33% deviation. Furthermore, the application of alkali treatment increased the surface roughness which in turn, enhanced the sound absorption capabilities of these composites. The increased fibre roughness also amplified friction between fibres and sound waves, resulting in higher sound absorption coefficients. In addition, X-ray diffraction, thermal stability (thermogravimetric analysis and differential scanning calorimetry), and scanning electron microscopy examinations were performed on the designated composition (5% by weight of pineapple leaf fibre and 25% by weight of waste tea leaf fibre) of the pineapple leaf fibre/waste tea leaf fibre/glass fibre/epoxy-based natural fibre-reinforced hybrid composite.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"275 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic response optimization of the multistage sandwich structures imperiled to explosive loading","authors":"Murlidhar Patel, Shivdayal Patel","doi":"10.1177/14644207241238220","DOIUrl":"https://doi.org/10.1177/14644207241238220","url":null,"abstract":"Explosive attacks are increasing day by day in the present era, and the design optimization of protective structures without increasing their weight is mainly a critical task for vehicles. Assessment of the dynamic response of the structures under explosive loading through experimentation is costly, with many restrictions, and highly harmful for both people and the environment. Hence, the present study deals with an explicit numerical investigation of the protective sandwich structures’ blast performance. The influence of the number of stages of honeycomb on the sandwich structures’ blast mitigation capacity was evaluated with the effective utilization of face sheets’ material as their intermediate sheets while maintaining the total volumes as well as masses of the structure's constant. The explosive loads of 1 to 3 kg of trinitrotoluene were used for the stand-off distance of 100 mm. The rate-dependent Johnson-Cook plasticity model was implemented on the designed sandwich models to discover their damage behaviors. The sandwiches’ face deflection, energy absorption, kinetic energy variation, and crushing behaviors were considered to characterize their blast mitigation capacity. The obtained results showed that increasing the number of stages of core in the sandwich structure by using a fraction of the back face sheet materials for intermediate sheets significantly improved their blast performance without increasing their volume occupancies and masses. For the two-stage and three-stage sandwich designs, 50% and 20%, respectively, utilization of their back face material for their intermediate sheet was found to be optimal.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140069933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of bio nanofiller in influencing the carbon and E-glass fabric reinforced composites","authors":"Sasmita Kar, Saismita Behera, Sandeep Bhoi, Sarojrani Pattnaik, Mihir Kumar Sutar","doi":"10.1177/14644207241236903","DOIUrl":"https://doi.org/10.1177/14644207241236903","url":null,"abstract":"The exceptional mechanical properties, dimensional stability and low cost of production of textile composites have made them quite popular in recent years. In the present analysis, plain woven inter, intra and hybrid carbon and E-glass fibre reinforced composites incorporated with or without nano-coconut shell ash (CSA) as filler were manufactured by hand lay-up method. The mechanical and thermal properties were determined for the manufactured composites. Simultaneously, the fractographic study was conducted by scanning electron microscopy to predict the different kind of failures in composites. The mechanical properties of the composites were found to be significantly better when 2 wt.% of CSA was substituted in it. The inter-hybrid composite containing 2 wt.% nanofiller demonstrated the highest tensile strength of 245.96 MPa, flexural strength of 496.03 MPa and maximum degradation temperature with weight change of 81.08%. A combination of intra- and inter-hybrid woven composite revealed the highest impact resistance of 3.3 J. The pseudo-ductile performance of intra-hybrid composites is also distinctly observed, showing moderate tensile stress of 299.376 MPa and maximum elongation of 5.137 mm. The current scientific effort makes it clear that the greatest tensile strength was obtained by positioning carbon fibres inside and the glass fibres outside. The surface proximity and diffusion of nanofillers in the composites further enhanced their tensile properties. Shear dispersion also led to maximum energy absorption without the need for nanofiller in case of combination of intra- and inter-woven fibre composites.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"21 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140057492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R Ramakrishnan, J Hemanth Kumar, Franklin Titus, P Maharshi, R Nithish
{"title":"Experimental investigation of 3D printed bio-inspired Xylotus lattice structure for energy absorption under quasi-static axial loading conditions","authors":"R Ramakrishnan, J Hemanth Kumar, Franklin Titus, P Maharshi, R Nithish","doi":"10.1177/14644207241236856","DOIUrl":"https://doi.org/10.1177/14644207241236856","url":null,"abstract":"The demand for robust, lightweight polymer components in various industries has prompted researchers to turn to nature's structures for inspiration. Leveraging Polymer Additive Manufacturing (PAM), specifically Fused Filament Fabrication (FFF), complex bio-inspired lattice polymer structures have been successfully realized. This experimental study focuses on the development of novel 3D printed bioinspired Xylotus lattice structure with elements inspired by xylem and lotus. The primary goal was to evaluate the deformation behaviour and energy absorption characteristics of 3D printed Xylotus lattice structure under quasi-static compressive loading and compare the results with existing research. The hybrid (Xylotus) structure of xylem and lotus exhibited a sequential failure pattern, starting with axial cracks and followed by buckling. Furthermore, an analysis of energy absorption showed that the xylem lattice outperformed the lotus lattice, thanks to its robust tubular elements. Notably, the Xylotus lattice displayed the highest energy absorption capabilities, capitalizing on features from both lotus and xylem. The energy absorption of the Xylotus lattice structure surpassed that of the xylem and lotus structures by 13% and 29.2%, respectively. The xylotus lattice structure exhibited 38% higher energy absorption compared to the existing research. Moreover, the specific energy absorption of the Xylotus lattice structure outperformed the lattice structures reported in the existing research by 37%. This study offers valuable insights into the structural behaviour, energy absorption, and specific energy absorption of bio-inspired lattice Xylotus structure. The findings contribute significantly to the design of resilient, lightweight components, supporting the advancement of bio-inspired structures for diverse applications in various industries.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"35 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140057595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
João PM Pragana, Rui FV Sampaio, Ricardo G Clara, Ivo MF Bragança, Carlos MA Silva, Paulo AF Martins
{"title":"A new deformable self-clinching fastener","authors":"João PM Pragana, Rui FV Sampaio, Ricardo G Clara, Ivo MF Bragança, Carlos MA Silva, Paulo AF Martins","doi":"10.1177/14644207241236463","DOIUrl":"https://doi.org/10.1177/14644207241236463","url":null,"abstract":"This work proposes a novel deformable self-clinching fastener for producing hidden lap joints suitable for both structural and electric power distribution applications. The fastener, characterized by an axisymmetric concave shape, is employed to fabricate hybrid busbar joints between electrically conductive strips of different materials and thicknesses. The self-clinching process with the new deformable fastener involves machining dovetail holes in both conductors and applying a squeezing force to the fastener to create a form-closed mechanical joint. The work encompasses both experimental investigations and numerical modeling using finite element analysis and is carried out on unit cells made from aluminum and copper conductors, which are representative of the joining process. The investigation evaluates force requirements, conducts destructive testing, and performs thermo-electric characterization of the new joints to conclude on the suitability of the new deformable self-clinching fastener for electric power distribution applications. Results indicate that while copper fasteners necessitate greater squeezing forces, they offer superior mechanical and thermo-electrical performance compared to aluminum fasteners in hybrid busbar joints.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"82 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140019594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data-driven analysis of surface roughness influence on weld quality and defect formation in laser welding of Cu–Al","authors":"Mohammadhossein Norouzian, Mahdi Amne Elahi, Marcus Koch, Reza Mahin Zaeem, Slawomir Kedziora","doi":"10.1177/14644207241236138","DOIUrl":"https://doi.org/10.1177/14644207241236138","url":null,"abstract":"The laser welding of Cu–Al alloys for battery applications in the automotive industry presents significant challenges due to the high reflectivity of copper. Inadequate bonding and low mechanical strength may occur when the laser radiation is directed toward the copper side in an overlap configuration welding. To tackle these challenges, a laser surface treatment technique is implemented to enhance the absorption characteristics and overcome the reflective nature of the copper material. However, elevating the surface roughness and heat-energy input over threshold values leads to heightened temperature and extreme weld. This phenomenon escalates the formation of detrimental intermetallic compounds (IMC), creating defects like cracks and porosity. Metallurgical analysis, which is time-consuming and expensive, is usually used in studies to detect these phases and defects. However, to comprehensively evaluate the weld quality and discern the impact of surface structure, adopting a more innovative approach that replaces conventional cross-sectional metallography is essential. This article proposes a model based on the image feature extraction of the welds to study the effect of the laser-based structure and the other laser parameters. It can detect defects and identify the weld quality by weld classification. However, due to the complexity of the photo features, the system requires image processing and a convolutional neural network (CNN). Results show that the predictive model based on trained data can detect different weld categories and recognize unstable welds. The project aims to use a monitoring model to guarantee optimized and high-quality weld series production. To achieve this, a deeper study of the parameters and the microstructure of the weld is utilized, and the CNN model analyzes the features of 1310 pieces of weld photos with different weld parameters.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"80 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140019716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}