{"title":"Performance of polyvinyl chloride-based E-glass reinforced isophthalic and orthophthalic polyester sandwich composites: A comparative study","authors":"Somanath Ojha, Himanshu Bisaria, Smita Mohanty, Krishnan Kanny","doi":"10.1177/14644207241263743","DOIUrl":"https://doi.org/10.1177/14644207241263743","url":null,"abstract":"This study investigates the performance of sandwich composites composed of polyvinyl chloride cores reinforced with E-glass fibers and bonded with isophthalic and orthophthalic polyester skins. The aim is to comparatively assess the mechanical and morphological characteristics of these composite structures. The comparative analysis also included variations in the skin thickness of the sandwich composite. Mechanical tests such as compressive, impact, and hardness were carried out. Moreover, fracture tests specifically focusing on single-edge notched beam fracture (mode I) were conducted under different temperature conditions, low (−10 °C), ambient (25 °C), and high (100 °C) temperatures. Comparative analysis of the mechanical properties indicated that the isophthalic-based sandwich composites exhibited superior mechanical characteristics when compared to their orthophthalic counterparts. Fracture properties of both types of sandwich composites demonstrated higher values at lower temperatures, followed by room temperature, and then high temperatures. In both types of sandwich composites, using two layers of E-glass on both sides of the polyvinyl chloride foam resulted in superior properties. This improvement can be attributed to the increased skin thickness. The interfacial properties were identified using Fourier transform infrared spectroscopy and scanning electron microscopy, revealing distinct spectroscopic features such as CH-stretching, C–O–C, CH bend, CN stretching, and NH stretching. Examination of the fractured surfaces through scanning electron microscopy revealed distinct features such as crushed fiber, fiber pull-out, honeycomb, riverline patterns, matrix-fiber delamination, and debonding, providing valuable insights into the composite's structural integrity.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"47 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongqi Zhang, Lun Zhao, Zhonghua Shen, Zeshan Abbas, Tao Gong, Wei Chen, Xu Long, Vivek Patel, Md Shafiqul Islam
{"title":"Exploring the impact of wire core diameter on microstructure and joint properties in ultrasonic wire harness welding","authors":"Yongqi Zhang, Lun Zhao, Zhonghua Shen, Zeshan Abbas, Tao Gong, Wei Chen, Xu Long, Vivek Patel, Md Shafiqul Islam","doi":"10.1177/14644207241262863","DOIUrl":"https://doi.org/10.1177/14644207241262863","url":null,"abstract":"The present study investigates ultrasonic metal welding to manufacture 10 mm<jats:sup>2</jats:sup> copper (Cu) wire joints with different core diameters. The primary purpose of this study is to explore the influence of wire core diameter on the performance of ultrasonic welded joints. Wire core diameter is positively correlated with the peeling resistance of the joint. Superior mechanical properties of the joint are achieved with an increased diameter of the wire core. The peeling strength of the welded joint of two wires with a wire core diameter of 0.25 mm reaches 306.8 N. Examining the welding temperature and assessing the joint's porosity reveals a significant impact of temperature on porosity. However, relying solely on porosity as a criterion for judging the overall forming quality of joints may be insufficient. Scanning electron microscope and energy-dispersive X-ray elemental analysis revealed that certain wires underwent plastic deformation at elevated temperatures without attaining atomic bonding. Additionally, the welded joint exhibits a compact structure externally and a more relaxed structure internally. The upper side of the joint in contact with the briquette and the lower side in contact with the welding head exhibit minimal gaps, while numerous gaps are evident in the middle of the joint. Furthermore, upon examining the fracture morphology, two distinct failure modes are identified at the joint surface of the conductor. The first involves the fracture of the wire core with a completely separated joint surface, resulting in poor mechanical properties of the joint. The second mode entails the ductile fracture of the wire core at the joint surface, indicating good mechanical properties of the joint.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"41 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Graebner, M Giese, K Treutler, S Lorenz, D Schroepfer, V Wesling, T Kannengiesser
{"title":"Processing of crack-free Nickel- and Cobalt-based wear protection coatings and defined surfaces by subsequent milling processes","authors":"M Graebner, M Giese, K Treutler, S Lorenz, D Schroepfer, V Wesling, T Kannengiesser","doi":"10.1177/14644207241265778","DOIUrl":"https://doi.org/10.1177/14644207241265778","url":null,"abstract":"In the area of plant engineering, steel components are provided with a wear protection coating for efficient use to protect them against corrosive, tribological, thermal and mechanical stresses. The use of innovative ultrasound-assisted milling processes and plasma-welded nickel- and cobalt-based wear protection coatings are being investigated to determine how more favourable machinability can be achieved while retaining the same wear protection potential. The focus is on the NiCrSiFeB alloy, which is intended to replace CoCr alloys in the area of screw machines. The utilization of ultrasonic-assisted milling for the machining of coating materials is a novel approach. The modification of hard facing layers in terms of microstructure and precipitation morphology as well as suitability for machining is investigated and compared with the CoCr alloy. The alloy modifications are generated by a PTA process by systematically adjusting the preheating and interpass temperatures, a crack-free wear-resistant layer can be generated, which is subsequently machined by a milling process. In addition to the crack-free properties, the microstructure, the bonding as well as the mixing between the NiCrSiFeB alloy and a 1.8550 as well as between the CoCr alloy and a 1.4828 are analysed and compared in the joining areas. In addition, heating and cooling rates are determined and a chemical analysis of the weld metals is performed. Furthermore, it was found that the build-up layers of NiCrSiFeB alloy are more difficult to machine using the milling process than the CoCr alloy, as higher milling forces are required.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"51 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tracking microstructural evolution and hardening in Al–Zn–Mg–Cu alloys aged artificially via electrical conductivity measurements","authors":"Mohd Sarim Khan, Chandrabalan Sasikumar","doi":"10.1177/14644207241264373","DOIUrl":"https://doi.org/10.1177/14644207241264373","url":null,"abstract":"Precipitation hardening, a crucial mechanism for strengthening aluminum alloys, involves stages like Guinier–Preston (GP) zone formation, precipitation, peak aging, and precipitate coarsening. This study focuses on the aluminum 7050 alloy, proposing a method to gauge artificial aging through electrical conductivity measurement. The evolving microstructure and time to peak hardness during aging are vital for creating high-strength alloys. The electrical conductivity variation over time is utilized to analyze the diffusion process governing the clustering and growth of specific phases (η′, η, and S) during artificial aging. The paper demonstrates the impact of GP zones, precipitate formation, and grain growth on electrical conductivity, correlating these factors with hardness, microstructure, and tensile strength to determine the hardening stage. Differential electrical conductivity plots, highlighting aging stages, assist in identifying the hardening phase. Tensile strength and hardness plots differentiate the precipitation phases. The Johnson–Mehl–Avrami–Kolmogorov equation models particle growth kinetics, determining growth rates for AA 7050 alloy. The overall activation energy for precipitate growth is 40.77 kJ/mol, with a growth constant ( m) of ∼4, indicating S phase nucleation during η′ and η growth.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"1 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I Messaoudi, H Mallek, H Mellouli, M Wali, F Dammak
{"title":"Fracture modeling of CNT/epoxy nanocomposites based on phase-field method using multiscale strategy","authors":"I Messaoudi, H Mallek, H Mellouli, M Wali, F Dammak","doi":"10.1177/14644207241262398","DOIUrl":"https://doi.org/10.1177/14644207241262398","url":null,"abstract":"The computational modeling of fracture, particularly in structures with complex crack topologies, remains challenging due to significant computational costs, especially in simulating two- and three-dimensional brittle fracture. This study presents an efficient phase-field model to address these challenges. By leveraging the user (UMAT) subroutine in ABAQUS and establishing an analogy between the phase-field evolution law and the heat transfer equation, the method efficiently tackles complex fracture problems. The model is verified through analysis of typical 2D and 3D fracture benchmarks with different failure modes, demonstrating accuracy and efficiency compared to experimental and numerical data. Additionally, the model is applied to explore brittle fracture in carbon nanotubes (CNTs)/epoxy nanocomposites, revealing insights into the impact of CNT weight fraction on fracture phenomena prediction. The incorporated CNTs in the matrix are considered uniformly dispersed and randomly oriented. Overall, the developed model and computational implementation show promise for meeting the requirements of structural-level engineering practices.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"67 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comparative investigation on the surface characteristics of AISI 304 and AISI 1045 steel influenced by turning combined with ball burnishing","authors":"Ahmed Raza, Sudhanshu Kumar","doi":"10.1177/14644207241263793","DOIUrl":"https://doi.org/10.1177/14644207241263793","url":null,"abstract":"Burnishing is a popular superfinishing procedure in the manufacturing industry that induces plastic deformation to the finished product by the application of a highly polished and hardened deforming element known as a burnishing tool. Research work on the burnishing process is numerous. However, the reports containing the comparative investigations are lacking. In this work, the effect of ball burnishing parameters namely penetration depth, burnishing spindle speed, and number of passes has been compared and analyzed on AISI 1045 and AISI 304 steels with respect to surface roughness, hardness, wear resistance, and corrosion resistance. Results indicate that the combination of a feed rate of 0.12 mm/rev, spindle speed of 160 rpm, and penetration depth of 0.025 mm with four passes generated minimum surface roughness (AISI 1045). However, maximum surface hardness is obtained with a feed rate of 0.12 mm/rev, spindle speed of 160 rpm, and at 0.085 mm penetration depth under one pass (AISI 304). The lowest specific wear rate is achieved with a feed rate of 0.12 mm/rev at a spindle speed of 160 rpm and a penetration depth of 0.085 mm in one pass (AISI 304). The burnishing process influenced both materials, AISI 304 and AISI 1045, under varying parametric conditions. The maximum reduction in surface roughness is 68.1% for AISI 304 and 79.3% for AISI 1045, while surface hardness improves by 27% for AISI 304 and 22% for AISI 1045. Additionally, the burnishing process reduces the specific wear rate by 49.3% for AISI 304 and 45.4% for AISI 1045. The refinement of grains during the burnishing process enhances corrosion resistance compared to the unburnished surface.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"63 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interfacial microstructure and mechanical properties of B4C/TC4 brazed joints based on Ag-Cu-Ti + W-AlN/Mo foil/Nb foil interlayer","authors":"Zhaoran Chen, Xuejian Liu, Zhaoquan Zhang","doi":"10.1177/14644207241258047","DOIUrl":"https://doi.org/10.1177/14644207241258047","url":null,"abstract":"The microstructure and formation mechanism of the boron carbide (B<jats:sub>4</jats:sub>C) and titanium alloy (TC4) joints brazed with AgCuTi-AlN-W + Mo foil + Nb foil brazing filler were investigated. The effects of W/AlN content on microstructure and mechanical properties of the joints were discussed. To alleviate residual thermal stress, refractory metal foils such as Mo/Nb foils were added. Compared with the common composite interlayers, the interlayer formed via AgCuTi-AlN-W + Mo foil + Nb foil in-situ alloying had more and finer reinforcing phases without reducing the activity of the filler material. The ductile Mo/Nb foils contributed to accommodate the large strain mismatch by elastic deformation. The interfaces between the adjoining materials and the interlayer were well-bonded without any cracks. The most effective system was nickel-plated B<jats:sub>4</jats:sub>C + Mo foil + AgCuTi-3 wt% AlN-5 wt% W + AgCu foil + Nb foil + TC4, which exhibited the highest shear strength of approximately 115 MPa.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"25 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141198162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abou Bakr Medjahed, Lasfer Youcef, Saoudi Toufik, Henniche Abdelkhalek, Zegaoui Abdeldjalil, Derradji Mehdi
{"title":"On the bending behavior of hybrid fiber–metal laminates (HFMLs) based on aluminum and glass/Kevlar fibers reinforced epoxy","authors":"Abou Bakr Medjahed, Lasfer Youcef, Saoudi Toufik, Henniche Abdelkhalek, Zegaoui Abdeldjalil, Derradji Mehdi","doi":"10.1177/14644207241257442","DOIUrl":"https://doi.org/10.1177/14644207241257442","url":null,"abstract":"In this work, the mechanical behaviors under flexural loading of fiber–metal laminates (FMLs) comprised of an aluminum alloy reinforced with glass fibers (GFs) and Kevlar fibers (KFs) embedded in an epoxy composite are experimentally investigated. For this purpose, non-FMLs, FMLs, and hybrid FMLs (HFMLs) are tested and their results are compared in terms of the flexural strength and modulus, strain to failure, toughness, interlaminar shear strength (ILSS), and specific properties. Results show that the incorporation of GFs on the compression side and KFs on the tensile side improves the bending properties of the HFMLs compared to the KF-based FMLs, which enhances the laminates’ resistance to bending loads. The HFMLs exhibit improvements of 24%, and 5% in flexural strength and modulus, respectively, compared to the KF-based FMLs. Moreover, hybridization significantly improves strain to failure by up to 115% compared to the GF-based FMLs. Additionally, the ILSS analysis reveals improved values in FMLs compared to non-FML samples, when GF-based FMLs demonstrate higher ILSS than KF-based ones, which can be attributed to GFs’ stiffness and high-quality bonding with the aluminum sheets. HFMLs attain a 19% improvement in ILSS compared to the KF-based FMLs. The failure mechanism depends on the intrinsic features of the studied fibers, while the studied FMLs display better damage tolerance. In this context, the HFMLs present enhanced toughness, delamination resistance, and the ability to prevent crack propagation, positioning them as promising candidates for lightweight structural applications where a balance between strength, stiffness, and toughness is required.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"51 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel Sales Candido Souza, Behzad V Farahani, Rui Miranda Guedes, Eduardo Gerhardt, Sandro Campos Amico, Volnei Tita
{"title":"On the experimental determination and prediction of damage evolution in composites via cyclic testing","authors":"Gabriel Sales Candido Souza, Behzad V Farahani, Rui Miranda Guedes, Eduardo Gerhardt, Sandro Campos Amico, Volnei Tita","doi":"10.1177/14644207241242739","DOIUrl":"https://doi.org/10.1177/14644207241242739","url":null,"abstract":"This study introduces a novel approach to obtaining and predicting damage evolution laws using quasi-static cyclic testing within the framework of continuum damage mechanics. To achieve this, a comprehensive set of characterization and parameter identification tests was performed. Carbon-epoxy specimens were manufactured using the filament-winding technique, and these laminates were tested using a universal testing machine. Digital image correlation was employed in all experiments to capture strain fields, and an alternative method utilizing the combined loading compression device is presented to obtain mechanical properties. Once the material was characterized, cyclic tests were conducted, including [Formula: see text], [Formula: see text], and [Formula: see text] tensile tests, and shear v-notch tests. These aim to determine damage evolution laws for both conditions, pure and coupled stress states. From these tests, values for damage onset and threshold were obtained and used to define four new parameters. These parameters permit the estimation of degradation relationships for any arbitrary orientation without requiring additional tests. This approach was tested as the proof-of-concept within the positive range of transverse tension and in-plane shear stress domain. The obtained results are promising, justifying its extension to other failure mechanisms. While acknowledging its limitations, this new approach holds potential for implementation in the analysis of progressive failure in fiber-reinforced composite materials, possibly in conjunction with established failure criteria and computational tools, mainly in the finite element method domain.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"20 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental investigations to assess surface fatigue failure in rolling contact bearing","authors":"Santhosh Kumar Kamarapu, Amarnath Muniyappa, Perumalla Sateesh Kumar, Deepak Kumar Prasad, Bajane Srinivasa Ajay Vardhaman","doi":"10.1177/14644207241254448","DOIUrl":"https://doi.org/10.1177/14644207241254448","url":null,"abstract":"Rolling element bearings are the most important components in almost all rotating machines. These bearings are often subjected to repetitive load cycles at different operating conditions. Excessive loads, speeds, and improper operating conditions lead to the propagation of defects on their load-bearing surfaces, thereby causing a negative impact on the performance of rotating machines. This paper presents the results of experimental investigations to assess wear propagation in roller bearings using lubricant degradation, vibration, and statistical parameter analysis methods. A roller bearing setup was developed in the laboratory, and the test bearing (NJ 307E) was subjected to fatigue tests over a period of 900 h. The bearing was operated at a speed and radial load of 800 rpm and 1 kN, respectively. The film thickness analysis revealed a transition in lubrication regimes during 600–900 h of operation. Grease structure degradation and oxidation analyses were carried out using scanning electron microscope images and the Fourier transform infrared radiation technique. Further, the vibration signals are extracted from the bearing housing at regular intervals. Using the fast Fourier transform technique, these vibration signals were used to analyze bearing fault frequencies to highlight the faults developed on bearing contact surfaces. The statistical features of vibration signals such as root mean square, kurtosis, and crest factor were used to assess the severity of wear propagated on the bearing contact surfaces. Integrating tribological and vibration parameter analysis techniques provided a reliable assessment of surface fatigue wear propagated on the roller-bearing contact surfaces.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"53 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}