I Messaoudi, H Mallek, H Mellouli, M Wali, F Dammak
{"title":"Fracture modeling of CNT/epoxy nanocomposites based on phase-field method using multiscale strategy","authors":"I Messaoudi, H Mallek, H Mellouli, M Wali, F Dammak","doi":"10.1177/14644207241262398","DOIUrl":null,"url":null,"abstract":"The computational modeling of fracture, particularly in structures with complex crack topologies, remains challenging due to significant computational costs, especially in simulating two- and three-dimensional brittle fracture. This study presents an efficient phase-field model to address these challenges. By leveraging the user (UMAT) subroutine in ABAQUS and establishing an analogy between the phase-field evolution law and the heat transfer equation, the method efficiently tackles complex fracture problems. The model is verified through analysis of typical 2D and 3D fracture benchmarks with different failure modes, demonstrating accuracy and efficiency compared to experimental and numerical data. Additionally, the model is applied to explore brittle fracture in carbon nanotubes (CNTs)/epoxy nanocomposites, revealing insights into the impact of CNT weight fraction on fracture phenomena prediction. The incorporated CNTs in the matrix are considered uniformly dispersed and randomly oriented. Overall, the developed model and computational implementation show promise for meeting the requirements of structural-level engineering practices.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"67 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241262398","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The computational modeling of fracture, particularly in structures with complex crack topologies, remains challenging due to significant computational costs, especially in simulating two- and three-dimensional brittle fracture. This study presents an efficient phase-field model to address these challenges. By leveraging the user (UMAT) subroutine in ABAQUS and establishing an analogy between the phase-field evolution law and the heat transfer equation, the method efficiently tackles complex fracture problems. The model is verified through analysis of typical 2D and 3D fracture benchmarks with different failure modes, demonstrating accuracy and efficiency compared to experimental and numerical data. Additionally, the model is applied to explore brittle fracture in carbon nanotubes (CNTs)/epoxy nanocomposites, revealing insights into the impact of CNT weight fraction on fracture phenomena prediction. The incorporated CNTs in the matrix are considered uniformly dispersed and randomly oriented. Overall, the developed model and computational implementation show promise for meeting the requirements of structural-level engineering practices.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).