Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications最新文献

筛选
英文 中文
Study on the control of post-roll bending deformation and residual stress in hot-rolled L-beam based on rapid cooling 基于快速冷却的热轧 L 型钢轧后弯曲变形和残余应力控制研究
IF 2.4 4区 材料科学
Jie Li, Xianming Zhao
{"title":"Study on the control of post-roll bending deformation and residual stress in hot-rolled L-beam based on rapid cooling","authors":"Jie Li, Xianming Zhao","doi":"10.1177/14644207241269622","DOIUrl":"https://doi.org/10.1177/14644207241269622","url":null,"abstract":"The bending deformation problem and internal residual stress of hot-rolled L-beams affect the quality and subsequent use performance of L-beams. In this paper, the computational model of the L-beam air-cooling process is established by using ABAQUS finite element software, which reveals the reasons for three times deformation of the L-beam from the perspectives of phase change expansion and metal cooling contraction. In order to control the deformation and residual stress of the L-beam, four experimental schemes were determined with the cooling method, water pressure, and the opening and closing state of the cooling unit of the cooler as variables. The temperature distribution, deformation before straightening, warping deformation after cutting, and magnetic field distribution curves of L-beams before and after rapid cooling under different experimental schemes were examined, and the microstructure and properties of L-beams were examined and the results were analyzed. The results show that the cooling uniformity of the L-beam can be improved by rapid cooling, which can effectively reduce the amount of bending per meter of the L-beam before straightening, the amount of warping deformation after cutting, and reduce the level of residual stress inside the L-beam, and at the same time can refine the microstructure and improve the properties. In this study, the amount of bending per meter and warpage deformation after cutting of L-beams were reduced by up to 67.3% and 85.7%, respectively, and the maximum value of the magnetic field gradient associated with the stresses in the L-beams was reduced by up to 80.2%.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"8 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formability limits due to local buckling in thin-walled square tubes 薄壁方管局部屈曲导致的成型性限制
IF 2.4 4区 材料科学
I.M. Almeida, J.P. Magrinho, M.B. Silva, P.A.F. Martins
{"title":"Formability limits due to local buckling in thin-walled square tubes","authors":"I.M. Almeida, J.P. Magrinho, M.B. Silva, P.A.F. Martins","doi":"10.1177/14644207241266898","DOIUrl":"https://doi.org/10.1177/14644207241266898","url":null,"abstract":"This article focuses on the identification and quantification of the formability limits due to local buckling in thin-walled square tubes subjected to axial compression. The methodology involves subjecting a series of thin-walled square tubular specimens of varying lengths to axial compression to detect sudden changes in the evolution of in-plane strains over time and determine the critical strain values at the onset of local buckling. Digital image correlation is employed to monitor the evolution of the thin-walled surfaces and the in-plane strains during axial compression. Finite element analysis is utilized to create digital twins of the thin-walled square tubes subjected to axial compression. The overall methodology is based on a previously developed technique that was successfully applied to thin-walled circular tubes and results validate its effectiveness in determining, for the first time, the formability limits of thin-walled square tubes due to local buckling in principal strain space.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"7 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of sustainable polyester composite building material using industrial waste plastic core, hemp fabric, and shrimp shell powder: Effect of quasi-isotropic fiber stacking and particle loading 利用工业废塑料芯、麻织物和虾壳粉生产可持续聚酯复合建筑材料:准各向同性纤维堆叠和颗粒负载的影响
IF 2.4 4区 材料科学
M Mohan Prasad, K Ganesan, N Ramesh Babu
{"title":"Production of sustainable polyester composite building material using industrial waste plastic core, hemp fabric, and shrimp shell powder: Effect of quasi-isotropic fiber stacking and particle loading","authors":"M Mohan Prasad, K Ganesan, N Ramesh Babu","doi":"10.1177/14644207241267123","DOIUrl":"https://doi.org/10.1177/14644207241267123","url":null,"abstract":"This study investigates the mechanical, fatigue, and creep properties of commercial plywood (6 mm) alternative polyester composite prepared using waste plastic core, hemp fiber, and shrimp shell powder. The primary aim of this research was to develop an exact replacement for plywood building material and study the effect of fiber stacking order as well as the volume fraction of shrimp shell biopolymer on load-bearing and time-dependent properties. Composites' distinct quasi-isotropic stacking orders with varying hemp fiber angles and shrimp filler contents of 0%, 1.0%, and 3.0% were prepared via compression molding and tested based on ASTM standards. Results revealed that the “D” stacking order {(−45/45) + (−30/60) + WPC + (−60/30) + (−45/45)} composite consistently outperformed others, exhibiting superior mechanical strength. Specifically, the D2 composite exhibited elevated strength, including a tensile strength of 168 MPa, flexural strength of 199 MPa, compression strength of 181 MPa, impact energy of 6.23 J, interlaminar shear strength of 25.9 MPa, and v-notch rail shear of 19.7 MPa. The addition of shrimp filler, rich in hydroxyl groups, enhanced intermolecular interactions, contributing to a resilient network and improved fatigue resistance. Moreover, the creep resistance was notably influenced by the quasi-isotropic arrangement, with the “D” designation showcasing optimal performance. Microscopic analysis revealed the critical role of shrimp shell content in promoting cohesion and interlocking fiber structures. The findings underscore the intricate synergy between stacking angles; filler composition and content in achieving robust and eco-friendly polyester composite building material to replace the termite, weather, and water affect commercial plywood.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"36 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric modelling and finite element analysis of plain-woven natural fibre reinforced hybrid textile composites 平纹天然纤维增强混合纺织复合材料的几何建模和有限元分析
IF 2.4 4区 材料科学
Mukesh Kumar, Abhishek Tevatia, Anurag Dixit
{"title":"Geometric modelling and finite element analysis of plain-woven natural fibre reinforced hybrid textile composites","authors":"Mukesh Kumar, Abhishek Tevatia, Anurag Dixit","doi":"10.1177/14644207241267024","DOIUrl":"https://doi.org/10.1177/14644207241267024","url":null,"abstract":"Prior to the fabrication and implementation processes, it is imperative to accurately predict the mechanical strength of the textile composite. The major goal of this work is to develop a three-dimensional finite element method to estimate the mechanical response of a woven fabric hybrid natural textile composite under compression. A mesoscale finite element model for a plain-woven fabric unit cell has been developed and analysed for its mechanical characteristics. For their mechanical robustness, six natural fibre plain-woven patterns viz. flax plain, jute plain, basalt plain, inter-yarn hybrid basalt-flax plain, and jute-flax plain were compared and thoroughly examined. These patterns’ mechanical properties were modelled and critically contrasted using matrix materials like thermoset epoxy and thermoplastic polypropylene. The basalt-flax plain with epoxy as the matrix material has excellent mechanical properties among the numerous analysed patterns. Thus, it was concluded that transverse-longitudinal shear characteristics and yarn cross-sectional stiffness have the greatest influence on compressed textiles. In parametric analysis, the impact of geometric parameters on strain energy, artificial strain energy, displacement, and contact pressure – such as yarn width, yarn spacing, and fabric thickness was thoroughly investigated and discussed in detail. The current model can accurately mimic a textile fabric with various weaving patterns, material properties, and stress conditions.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"326 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatigue performance impact of hybridization on Kevlar/flax and glass/flax hybrid composites 杂化对凯夫拉/亚麻和玻璃/亚麻杂化复合材料疲劳性能的影响
IF 2.4 4区 材料科学
Ahmed Sarwar, Habiba Bougherara
{"title":"Fatigue performance impact of hybridization on Kevlar/flax and glass/flax hybrid composites","authors":"Ahmed Sarwar, Habiba Bougherara","doi":"10.1177/14644207241265500","DOIUrl":"https://doi.org/10.1177/14644207241265500","url":null,"abstract":"This research investigates the effects of hybridization with flax in two distinct laminates: Kevlar/flax (Kevlar/flax/epoxy, KFE) and glass/flax (glass/flax/epoxy, GFE), each featuring two flax fiber orientations (0° and ±45°) under stress-controlled conditions. Employing the wet hand lay-up method, the laminates, comprising 16 plies in a sandwich structure, undergo tension–tension stress-controlled loading at 5 Hz with R = 0.1 until failure or completion of 10<jats:sup>6</jats:sup> cycles. A comprehensive analysis, encompassing fatigue life, damage modulus, residual strain, fatigue modulus, and hysteresis energy, is conducted to discern the synergies and influences of Kevlar and glass with flax fibers. Results indicate that KFE hybrid specimens exhibit exceptional fatigue strength, surpassing other laminates in load endurance by a significant margin (1.22x–2.46x) over the same cycle count. Conversely, GFE hybrids, despite demonstrating initially higher strength, experience a rapid decline in endurance, particularly evident in the 0° GFE hybrids, which exhibit a 0.43x reduction. Moreover, both KFE hybrids demonstrate a more gradual rate of decline compared to their corresponding GFE hybrids (0.82x and 0.63x) and KFE UD (unidirectional) samples show less sensitivity than FE UD (0.87x). These findings suggest that Kevlar forms a highly effective hybrid with flax, whereas glass, despite common comparisons with flax, does not yield a favorable hybrid for structural applications.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"169 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Free vibration analysis of rotating sandwich panels with carbon nanotubes reinforced face sheets and honeycomb core in thermal environments using finite element method 用有限元法分析热环境下带有碳纳米管增强面片和蜂窝芯的旋转夹层板的自由振动
IF 2.4 4区 材料科学
Debarshi Biswas, Tripuresh Deb Singha, Tanmoy Bandyopadhyay
{"title":"Free vibration analysis of rotating sandwich panels with carbon nanotubes reinforced face sheets and honeycomb core in thermal environments using finite element method","authors":"Debarshi Biswas, Tripuresh Deb Singha, Tanmoy Bandyopadhyay","doi":"10.1177/14644207241258739","DOIUrl":"https://doi.org/10.1177/14644207241258739","url":null,"abstract":"The present work investigates the free vibration response of rotating sandwich panels comprising nanoparticle-reinforced face sheets and a metallic honeycomb core using the finite element method (FEM). The honeycomb core is either re-entrant or non-re-entrant, while the composite face sheets are made of poly-methyl methacrylate (PMMA) matrix reinforced by carbon nanotubes (CNTs). The deformations of the sandwich panel are modelled using a higher-order shear deformation theory (HSDT), considering seven degrees of freedom at each node. The effective properties of the CNTs reinforced face sheets depend on the working temperature and CNTs grading pattern and are evaluated with the help of the extended rule of mixture (EROM). The titanium alloy-based metallic honeycomb core properties depend on the inclination angle and rib-thickness ratio. The work considers the influence of crucial parameters like inclined angle, rib-thickness ratio, pre-twist angle, panel aspect ratio, core-to-face sheet thickness ratio, rotational speed and hub radius. A decrease in the natural frequency is observed with an increase in the honeycomb angle, while the reverse trend occurs with an increase in the rib-thickness ratio of the honeycomb core. An increase in the rotational speed and hub radius increases the natural frequencies irrespective of the CNTs distribution pattern. Also, the analysis involves plotting the mode shapes at different honeycomb angles. The first mode shape indicates the first bending for higher values of the auxetic angles, while it is the first twist mode at lower values.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"57 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the influence of fiber orientation on the mechanical characteristics of polymer composites reinforced with banana and corn fibers 探索纤维取向对香蕉和玉米纤维增强聚合物复合材料机械特性的影响
IF 2.4 4区 材料科学
Shubham Kumar, Anant Prakash Agrawal, Shahazad Ali, Ankit Manral
{"title":"Exploring the influence of fiber orientation on the mechanical characteristics of polymer composites reinforced with banana and corn fibers","authors":"Shubham Kumar, Anant Prakash Agrawal, Shahazad Ali, Ankit Manral","doi":"10.1177/14644207241260662","DOIUrl":"https://doi.org/10.1177/14644207241260662","url":null,"abstract":"In recent decades, the utilization of polymer composites reinforced with natural fibers has seen a significant increase due to their durability, eco-friendliness, and favorable composite properties. This study investigates the influence of unidirectional and cross-directional fiber orientation on the mechanical properties of polymer composites reinforced with banana and corn fibers, fabricated through a hand-lay-up process. The research assesses the impact of fiber orientation on various mechanical properties, including density, porosity, tensile strength, flexural strength, and impact strength. The findings reveal that the higher densities of banana and corn fibers, in comparison to the epoxy matrix, contribute to increased overall weight density in the composites, with cross-directional fiber orientation leading to higher porosity. Moreover, cross-directional reinforcement orientation enhances tensile strength, resulting in a robust bond with the matrix. Composites with cross-directional corn fibers exhibit the highest ultimate tensile strength of 49.57 MPa, marking a significant improvement over other fiber configurations. Notably, unidirectional corn fibers outperform in flexural strength of 14.07 MPa, surpassing banana–corn, and banana–banana configurations by 268.32% and 32.73%, respectively, and cross-directional banana–corn hybrid composites exhibit superior impact strength measuring 5.31 kJ/m<jats:sup>2</jats:sup> due to their ability to resist crack propagation. Whereas scanning electron microscopy micrographs of fractured samples reveal debonding, fiber pullout, and fiber scissoring as the root causes of sample failure under tensile load These insights provide valuable guidance for the design and application of composite materials.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"1 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forming mechanism of single-channel multilayer laser cladding Fe60 process under different laser heat source operating mode 不同激光热源工作模式下单通道多层激光熔覆 Fe60 工艺的成型机理
IF 2.4 4区 材料科学
Chang Li, Han Sun, Junjia Zhao, Xing Han
{"title":"Forming mechanism of single-channel multilayer laser cladding Fe60 process under different laser heat source operating mode","authors":"Chang Li, Han Sun, Junjia Zhao, Xing Han","doi":"10.1177/14644207241259832","DOIUrl":"https://doi.org/10.1177/14644207241259832","url":null,"abstract":"Continuous wave (CW) and pulsed wave are the two principal modes of operation used to control the laser heat source. Different laser heat source operating modes have an essential impact on the rapid cooling and heating temperature change rate during the cladding process, which directly determines the cladding layer quality. The laser cladding process is meaningful to quantitatively reveal the mechanism of single-channel multilayer cladding and forming under different laser heat source operating modes. In this article, a multi-field coupled 3D numerical model of the single-channel multilayer cladding process under different laser operating modes was proposed, and the thermal physical parameters of the cladding material were computed on the basis of Calculation of Phase Diagrams method. The mechanism of the impact of distinct operating modes on the multi-field coupled ephemeral evolution process of laser cladding was investigated by using the solid/liquid interface tracking technique, which comprehensively considers the light powder interaction between the powder waist beam and the laser beam under different operating modes. The temperature, flow, and stress fields were computationally solved for a single-channel multilayer cladding process. On the foundation of this study, the impact mechanism of pulse duty cycle and pulse frequency on the cladding behavior of single-channel and multilayers during pulsed laser cladding were dissected. The macroscopic morphology and microstructure of the cladding layer were observed by KEYENCE VH-Z100R ultra-deep field electron microscope, and the feasibility of the model was confirmed. This study provides a significant theoretical rationale for enhancing the cladding quality under different laser operating modes.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"57 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the crashworthiness of bi-tubular architectures with ABS cores under axial loading: Experimental and numerical investigation 提高带 ABS 核心的双管结构在轴向载荷下的耐撞性:实验和数值研究
IF 2.4 4区 材料科学
ThanhSon Doan, DucHieu Le, Ameen Topa, Ahmad Baroutaji, PhucThien Nguyen, TrongNhan Tran
{"title":"Improving the crashworthiness of bi-tubular architectures with ABS cores under axial loading: Experimental and numerical investigation","authors":"ThanhSon Doan, DucHieu Le, Ameen Topa, Ahmad Baroutaji, PhucThien Nguyen, TrongNhan Tran","doi":"10.1177/14644207241266081","DOIUrl":"https://doi.org/10.1177/14644207241266081","url":null,"abstract":"In this study, quasi-static axial compression tests were conducted on mild steel bi-tubular architectures with rectangular nested tube (RNT) and square nested tube (SNT) geometries to evaluate their crushing and crashworthiness performance. A multi-criteria decision-making approach was employed to identify the optimal energy-absorbing architecture. The SNT structure, with the smallest gap size between the inner and outer tubes, exhibited the most desirable energy absorption characteristics among the considered cases. Acrylonitrile butadiene styrene (ABS) cores, with either rhombic or square cell configurations, were used to enhance the energy absorption performance of the SNT structure. A finite element model was created to evaluate the responses of the SNT structure filled with ABS cores. The validity of finite element simulations of the ABS cores and optimal architecture under axial compression were confirmed by comparing them with experimental results. The integration of the cores into the nested architecture enhanced crashworthiness performance and contributed to the control of the structure deformation. The SNT structure filled with rhombic ABS core exhibited superior crashworthiness performance compared to the counterpart filled with square core. The energy absorption of nested SNT structures filled with rhombic ABS core can be 116.93% greater than the corresponding non-filled structure. The crashworthiness indices of ABS-filled structures were highly sensitive to the number of cells and wall thickness of the core. A nested architecture with an ABS core could serve as a novel architecture for energy-absorbing devices.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"67 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and control architecture of novel hybrid metal additive manufacturing incremental forming technology 新型混合金属增材制造增量成形技术的制造和控制结构
IF 2.4 4区 材料科学
Mithilesh Kumar Tiwari, Shekhar Srivastava, K Ponappa, Puneet Tandon
{"title":"Fabrication and control architecture of novel hybrid metal additive manufacturing incremental forming technology","authors":"Mithilesh Kumar Tiwari, Shekhar Srivastava, K Ponappa, Puneet Tandon","doi":"10.1177/14644207241263977","DOIUrl":"https://doi.org/10.1177/14644207241263977","url":null,"abstract":"Hybrid manufacturing processes redefine production dynamics by harnessing the synergistic interplay between process mechanisms, energy sources, and tools to impact manufacturing quality, productivity, and sustainability significantly. Accordingly, this article focuses on hybrid additive manufacturing incremental forming, where additive manufacturing and incremental forming are integrated in a unified setup, driven by a single power source. This integration opens avenues for innovative component and production design, capitalizing on the strengths of both methods while mitigating drawbacks. The fabrication of the hybrid additive manufacturing incremental forming setup involves crucial components like a hybrid extrusion forming unit, supporting plates, hopper-barrel assembly, band heaters, solenoid setup, and a comprehensive control architecture. Addressing challenges, particularly overheating in the hopper, and feeding zone, ensures effective material transformation with the hybrid extrusion forming unit. The subsequent section provides analytical analysis and validation of the hybrid extrusion unit. This technology enhances the entire process and addresses issues related to metal additive manufacturing, such as porosity and material shrinkage. The maximum tensile force sustained in hybrid additive manufacturing incremental forming before fracture demonstrates a notable enhancement of about 20% from 670 N in additive manufacturing to 805 N in hybrid additive manufacturing incremental forming. It also removes micro-cracks, and voids, and improves the inter-layer bonding, as observed through scanning electron microscopy. The results highlight hybrid additive manufacturing incremental forming's superior enhancement of mechanical properties and surface quality compared to traditional additive manufacturing approaches.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"20 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信