{"title":"杂化对凯夫拉/亚麻和玻璃/亚麻杂化复合材料疲劳性能的影响","authors":"Ahmed Sarwar, Habiba Bougherara","doi":"10.1177/14644207241265500","DOIUrl":null,"url":null,"abstract":"This research investigates the effects of hybridization with flax in two distinct laminates: Kevlar/flax (Kevlar/flax/epoxy, KFE) and glass/flax (glass/flax/epoxy, GFE), each featuring two flax fiber orientations (0° and ±45°) under stress-controlled conditions. Employing the wet hand lay-up method, the laminates, comprising 16 plies in a sandwich structure, undergo tension–tension stress-controlled loading at 5 Hz with R = 0.1 until failure or completion of 10<jats:sup>6</jats:sup> cycles. A comprehensive analysis, encompassing fatigue life, damage modulus, residual strain, fatigue modulus, and hysteresis energy, is conducted to discern the synergies and influences of Kevlar and glass with flax fibers. Results indicate that KFE hybrid specimens exhibit exceptional fatigue strength, surpassing other laminates in load endurance by a significant margin (1.22x–2.46x) over the same cycle count. Conversely, GFE hybrids, despite demonstrating initially higher strength, experience a rapid decline in endurance, particularly evident in the 0° GFE hybrids, which exhibit a 0.43x reduction. Moreover, both KFE hybrids demonstrate a more gradual rate of decline compared to their corresponding GFE hybrids (0.82x and 0.63x) and KFE UD (unidirectional) samples show less sensitivity than FE UD (0.87x). These findings suggest that Kevlar forms a highly effective hybrid with flax, whereas glass, despite common comparisons with flax, does not yield a favorable hybrid for structural applications.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"169 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue performance impact of hybridization on Kevlar/flax and glass/flax hybrid composites\",\"authors\":\"Ahmed Sarwar, Habiba Bougherara\",\"doi\":\"10.1177/14644207241265500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates the effects of hybridization with flax in two distinct laminates: Kevlar/flax (Kevlar/flax/epoxy, KFE) and glass/flax (glass/flax/epoxy, GFE), each featuring two flax fiber orientations (0° and ±45°) under stress-controlled conditions. Employing the wet hand lay-up method, the laminates, comprising 16 plies in a sandwich structure, undergo tension–tension stress-controlled loading at 5 Hz with R = 0.1 until failure or completion of 10<jats:sup>6</jats:sup> cycles. A comprehensive analysis, encompassing fatigue life, damage modulus, residual strain, fatigue modulus, and hysteresis energy, is conducted to discern the synergies and influences of Kevlar and glass with flax fibers. Results indicate that KFE hybrid specimens exhibit exceptional fatigue strength, surpassing other laminates in load endurance by a significant margin (1.22x–2.46x) over the same cycle count. Conversely, GFE hybrids, despite demonstrating initially higher strength, experience a rapid decline in endurance, particularly evident in the 0° GFE hybrids, which exhibit a 0.43x reduction. Moreover, both KFE hybrids demonstrate a more gradual rate of decline compared to their corresponding GFE hybrids (0.82x and 0.63x) and KFE UD (unidirectional) samples show less sensitivity than FE UD (0.87x). These findings suggest that Kevlar forms a highly effective hybrid with flax, whereas glass, despite common comparisons with flax, does not yield a favorable hybrid for structural applications.\",\"PeriodicalId\":20630,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"volume\":\"169 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14644207241265500\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241265500","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fatigue performance impact of hybridization on Kevlar/flax and glass/flax hybrid composites
This research investigates the effects of hybridization with flax in two distinct laminates: Kevlar/flax (Kevlar/flax/epoxy, KFE) and glass/flax (glass/flax/epoxy, GFE), each featuring two flax fiber orientations (0° and ±45°) under stress-controlled conditions. Employing the wet hand lay-up method, the laminates, comprising 16 plies in a sandwich structure, undergo tension–tension stress-controlled loading at 5 Hz with R = 0.1 until failure or completion of 106 cycles. A comprehensive analysis, encompassing fatigue life, damage modulus, residual strain, fatigue modulus, and hysteresis energy, is conducted to discern the synergies and influences of Kevlar and glass with flax fibers. Results indicate that KFE hybrid specimens exhibit exceptional fatigue strength, surpassing other laminates in load endurance by a significant margin (1.22x–2.46x) over the same cycle count. Conversely, GFE hybrids, despite demonstrating initially higher strength, experience a rapid decline in endurance, particularly evident in the 0° GFE hybrids, which exhibit a 0.43x reduction. Moreover, both KFE hybrids demonstrate a more gradual rate of decline compared to their corresponding GFE hybrids (0.82x and 0.63x) and KFE UD (unidirectional) samples show less sensitivity than FE UD (0.87x). These findings suggest that Kevlar forms a highly effective hybrid with flax, whereas glass, despite common comparisons with flax, does not yield a favorable hybrid for structural applications.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).