Procedia CIRP最新文献

筛选
英文 中文
Experimental investigation on the surface and volume homogeneity of additive manufactured fused silica components in the Laser Glass Deposition process 激光玻璃沉积工艺中添加剂制造的熔融石英部件的表面和体积均匀性实验研究
Procedia CIRP Pub Date : 2024-01-01 DOI: 10.1016/j.procir.2024.08.116
{"title":"Experimental investigation on the surface and volume homogeneity of additive manufactured fused silica components in the Laser Glass Deposition process","authors":"","doi":"10.1016/j.procir.2024.08.116","DOIUrl":"10.1016/j.procir.2024.08.116","url":null,"abstract":"<div><p>Laser Glass Deposition is an additive manufacturing method to produce individualized structural components out of glass. A CO<sub>2</sub> laser is utilized as a heat source to melt fused silica filaments and transform them into a formable viscous state. The fiber filament is fed laterally under a defined angle into the process zone. The viscous filament is deposited layer-by-layer using a 3-axis linear system with an integrated rotational axis. To investigate the surface and volume quality of the additively manufactured fused silica components, fully dense test specimens are analyzed in this paper. Quality characteristics such as surface roughness, formation of boundary layers and optical transparency constitute the focus of the investigations. Consequently, fully dense glass components with homogeneous volume structures without pores and boundary layers and a surface roughness of less than 30 nm were printed successfully.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124004700/pdf?md5=3d76233a7c7b8d046490a8779a369736&pid=1-s2.0-S2212827124004700-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CuNiSiCr alloy parametrization for defect-free DED-LB coating with conventional fibre laser 利用传统光纤激光器实现无缺陷 DED-LB 涂层的铜镍硅铬合金参数化
Procedia CIRP Pub Date : 2024-01-01 DOI: 10.1016/j.procir.2024.08.124
{"title":"CuNiSiCr alloy parametrization for defect-free DED-LB coating with conventional fibre laser","authors":"","doi":"10.1016/j.procir.2024.08.124","DOIUrl":"10.1016/j.procir.2024.08.124","url":null,"abstract":"<div><p>Copper alloys´ high thermal conductivity combined with the freeform capabilities of the additive manufacturing technologies, offer new opportunities in the design of aerospace components, such as thrust nozzles. However, the high reflectivity of copper alloys at the 1.076 µm wavelength range makes their manufacturing with conventional fibre lasers difficult. Therefore, an effective methodology for manufacturing CuNiSiCr-alloys with conventional fibre lasers is required.</p><p>For this purpose, the laser-based Directed Energy Deposition (DED-LB) process for depositing a CuNiSiCr-alloy is parametrized to ensure a defect-free operation of the final part. Through a design of experiments process, the optimum parameters are obtained and they are validated through the manufacturing of single clads and more complex geometries. During the tests, the melt-pool temperature and dimensions are monitored to increase the control over the manufacturing process and ensure process stability. Results show a high metallurgical integrity, which justifies the viability of fibre lasers to manufacture CuNiSiCr-alloys.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124004785/pdf?md5=11ce1b593a1b99ff974d34fccdec2434&pid=1-s2.0-S2212827124004785-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of laser defocusing on duplex stainless steels for higher scan speeds in Laser-Based Powder Bed Fusion (PBF-LB/M) 在激光粉末床熔融(PBF-LB/M)中提高扫描速度时激光散焦对双相不锈钢的影响
Procedia CIRP Pub Date : 2024-01-01 DOI: 10.1016/j.procir.2024.08.095
{"title":"Effect of laser defocusing on duplex stainless steels for higher scan speeds in Laser-Based Powder Bed Fusion (PBF-LB/M)","authors":"","doi":"10.1016/j.procir.2024.08.095","DOIUrl":"10.1016/j.procir.2024.08.095","url":null,"abstract":"<div><p>Duplex stainless steels (DSS) employ a bi-modal microstructure consisting of equal parts ferrite and austenite. However, when processed via laser-based powder bed fusion (PBF-LB/M) the high cooling rates lead to a dominantly ferritic microstructure, thus making a post-process heat treatment necessary. This sparks the interest in accelerating the manufacturing time by increasing scan speeds. Defocusing of the laser beam offers the possibility to alter the melt pool morphology and thereby the melting mode. Therefore, this study presents the influence of the defocusing distance for PBF-LB/M manufactured DSS parts. The melt pool becomes shallower and wider as the defocus distance increases, but also has a more uniform shape at high scan speeds compared to the focused beam. Furthermore, defocusing of the laser beam results in denser parts at scan speeds of up to 1800 mm/s, potentially facilitating higher build rates. The duplex microstructure could be restored by a post process heat-treatment.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124004499/pdf?md5=fdaeca3d47c816d1ee31602f75538bbc&pid=1-s2.0-S2212827124004499-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Localized defect frequencies for Laser Metal Deposition processes 激光金属沉积工艺的局部缺陷频率
Procedia CIRP Pub Date : 2024-01-01 DOI: 10.1016/j.procir.2024.08.128
{"title":"Localized defect frequencies for Laser Metal Deposition processes","authors":"","doi":"10.1016/j.procir.2024.08.128","DOIUrl":"10.1016/j.procir.2024.08.128","url":null,"abstract":"<div><p>Laser Metal Deposition (LMD) uses laser energy and powder material to create structures on existing components. It is capable of producing cost-effective multi-material compositions, such as reinforcing metals with ceramic particles for improved wear resistance. However, the use of dissimilar materials often leads to defects, particularly delamination. Previous studies have found a connection between these defects and specific airborne acoustic emissions (AE).</p><p>To mitigate the impact of defects, extensive optimization of process parameters and real-time process monitoring are recommended. For AE, precise localization of defects is crucial besides to time- and frequency-resolved information, especially while producing multiple components on a substrate material.</p><p>This study evaluates multi-sensor arrays for the localization of delamination defects. The research investigates the influence of localization algorithms and array patterns on the accuracy and reliability of defect localization. Experiments were conducted on a test platform with simulated acoustical events to determine the most suitable localization setup.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124004827/pdf?md5=97d382e9e8e7d8625dc9b321451c87d2&pid=1-s2.0-S2212827124004827-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative analysis of spatter formation in Laser Powder Bed Fusion: unraveling the impact of beam shaping and multi-beam processing 激光粉末床融合中飞溅物形成的定量分析:揭示光束整形和多光束加工的影响
Procedia CIRP Pub Date : 2024-01-01 DOI: 10.1016/j.procir.2024.08.136
{"title":"Quantitative analysis of spatter formation in Laser Powder Bed Fusion: unraveling the impact of beam shaping and multi-beam processing","authors":"","doi":"10.1016/j.procir.2024.08.136","DOIUrl":"10.1016/j.procir.2024.08.136","url":null,"abstract":"<div><p>In the realm of laser-based powder bed fusion processes with metals (PBF-LB/M), spatter formation serves as a crucial stability criterion. However, existing analyses often adopt a qualitative approach, hindering meaningful comparisons between processes. The quantitative investigation of the advantages of beams with non-Gaussian intensity distribution as well as multi-beam processing strategies with regard to spatter formation is still largely unexplored. To address this gap, we present an experimental setup utilizing high-speed videography and individual particle tracking to measure spatter characteristics, count size, ejection angle, and velocity, within the PBF-LB/M process conditions. The investigation deals with focused and defocused Gaussian beams, a beam with ring-shaped intensity as well as processing with two coupled Gaussian beams for the PBF-LB/M of nickel-base alloy 625.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124004906/pdf?md5=e36e674fa24d65dddcbc9fdc3736a5ad&pid=1-s2.0-S2212827124004906-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical strain measurements during pulsed laser beam welding to improve the understanding of hot crack formation of EN AW-6082 aluminum alloy 脉冲激光束焊接过程中的光学应变测量,以加深对 EN AW-6082 铝合金热裂纹形成的理解
Procedia CIRP Pub Date : 2024-01-01 DOI: 10.1016/j.procir.2024.08.151
{"title":"Optical strain measurements during pulsed laser beam welding to improve the understanding of hot crack formation of EN AW-6082 aluminum alloy","authors":"","doi":"10.1016/j.procir.2024.08.151","DOIUrl":"10.1016/j.procir.2024.08.151","url":null,"abstract":"<div><p>E-mobility turned in the last years to be an emerging market and one solution to fossil fuel free mobility for the future. E-mobility requires, compared to fossil-fueled mobility concepts, a huge amount of welding tasks, which have to guarantee different functionality, as for example high strength, ductility, but also low resistivity and tightness. Last is especially for housing or cases of aluminum in automotive challenging, as pores and cracks can occur. Pulsed laser welding presents, due to the adaptable heat input and the temporal modification of stress state and solidification conditions advantages for this type of applications. EN AW-6xxx group of aluminum alloys is mainly used for such components due to their favorable mechanical properties. However, these alloys are susceptible to hot cracking during solidification from the molten phase. This article aims to present a methodology for demonstrating the resulting strain during pulsed laser beam welding of hot crack susceptible aluminum alloys. It will highlight the influence of factors such as pulse shape, shielding gas, and flow rate on strain and strain rate.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124005055/pdf?md5=6d96b790c667ab1dfa01211dca2ac042&pid=1-s2.0-S2212827124005055-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melt flow complexity in multi-spot laser welding of asymmetric T-joints 不对称 T 形接头多点激光焊接中的熔体流动复杂性
Procedia CIRP Pub Date : 2024-01-01 DOI: 10.1016/j.procir.2024.08.102
{"title":"Melt flow complexity in multi-spot laser welding of asymmetric T-joints","authors":"","doi":"10.1016/j.procir.2024.08.102","DOIUrl":"10.1016/j.procir.2024.08.102","url":null,"abstract":"<div><p>This study investigates melt flow dynamics in asymmetric T-joint laser welding, particularly with sheets inclined up to 45°. This complex scenario requires filler wire, accessible only from the flat sheet side. High-speed imaging at the top and root captures transient phenomena leading to weld imperfections. Research on stainless-steel involved the impact of first-order welding parameters on the weld quality. This included multi-spot laser welding with two beams. The analysis focused on melt pool dynamics under these challenging conditions. The asymmetric root side’s geometry necessitates proper melt flow to form a favorable root topology, avoiding defects like wavy roots and porosity. Key observations included intermittent keyhole openings, transient melt flow effects, and potential spatter ejection at the bottom. The findings offer a comprehensive understanding of 3D asymmetric melt flow, laying the analytical groundwork for enhancing the weld quality.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124004566/pdf?md5=d0a42273256794b45ec42d2e4826eb8d&pid=1-s2.0-S2212827124004566-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic diagnosis and thickness determination for white etching layers in deep drilled steels based on thresholding and machine learning algorithms 基于阈值和机器学习算法的深钻钢中白色蚀刻层的自动诊断和厚度测定
Procedia CIRP Pub Date : 2024-01-01 DOI: 10.1016/j.procir.2024.05.008
Simon Strodick , Robert Schmidt , Andreas Zabel , Dirk Biermann , Frank Walther
{"title":"Automatic diagnosis and thickness determination for white etching layers in deep drilled steels based on thresholding and machine learning algorithms","authors":"Simon Strodick ,&nbsp;Robert Schmidt ,&nbsp;Andreas Zabel ,&nbsp;Dirk Biermann ,&nbsp;Frank Walther","doi":"10.1016/j.procir.2024.05.008","DOIUrl":"https://doi.org/10.1016/j.procir.2024.05.008","url":null,"abstract":"<div><p>The reliable detection and precise assessment of white etching layers (WEL) are key challenges in the investigation of a component’s surface integrity. This paper proposes an innovative methodology for evaluating the extent of WEL in quenched and tempered steels, machined by Boring and Trepanning Association (BTA) deep hole drilling. Micrographs obtained by light microscopy were partitioned into classes by three methods, separating the WEL from the base material and the embedding resin. Traditional manual segmentation was performed as a benchmark for automatic segmentation methods. A gray level thresholding-based method served for the segmentation of micrographs partitioned into subsets. In addition to conventional manual and thresholding-based segmentation, a machine learning-based approach for image segmentation was applied. The segmented images were further analyzed by a newly developed set of algorithms, implemented to obtain detailed information on the WEL, e.g. their average thickness as well as the area covered by WEL in the micrographs. Results indicate that both, gray level thresholding, as well as machine learning-based image segmentation, show potential for the automated diagnosis and assessment of WEL. They both yield quantitatively similar, but less biased results compared to manual segmentation.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124002129/pdf?md5=0a3f744bb8aeb51dc6f2eeeb448716b9&pid=1-s2.0-S2212827124002129-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141328751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of an ambient energetic field on precision cutting 环境能量场对精密切割的影响
Procedia CIRP Pub Date : 2024-01-01 DOI: 10.1016/j.procir.2024.05.010
Tjarden Zielinski , Oltmann Riemer
{"title":"The influence of an ambient energetic field on precision cutting","authors":"Tjarden Zielinski ,&nbsp;Oltmann Riemer","doi":"10.1016/j.procir.2024.05.010","DOIUrl":"https://doi.org/10.1016/j.procir.2024.05.010","url":null,"abstract":"<div><p>Ultrasonic-assisted machining processes with diamond tools are regarded as a key technology for reducing the catastrophic tool wear occurring while machining steel workpieces with surface roughness in optical quality. Economical machining of various steel materials with significantly reduced wear of the diamond tool further improved since elliptical vibration cutting with a superimposed ultrasonic tool motion was introduced. How far the result of the machining process is influenced by the changing process kinematics of the ultrasonic motion alone or by the energy introduced into the material by the energy of an ambient ultrasonic field has not been investigated yet. The presented work is dedicated to superimposing an ultrasonic field into the workpiece during machining using an ultrasonic bath. Machining experiments with cutting grooves and particular surfaces with monocrystalline diamond tools are carried out on brass, copper and aluminum. The process forces show a decrease with the increase of the ultrasonic energy of up to 50 percent, while the surface roughness remains uninfluenced by the ultrasonic energy. The results indicate that the ultrasonic induced softening has an influence on the cutting process, which could improve the machining of brittle hard materials in future investigations.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124002142/pdf?md5=b571f0031da033ebb9559df79c89de42&pid=1-s2.0-S2212827124002142-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141328753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machining Effect On The Surface Integrity And SE Of Additively Manufactured And Heat-Treated Nitinol 加工对添加制造和热处理镍钛诺表面完整性和 SE 的影响
Procedia CIRP Pub Date : 2024-01-01 DOI: 10.1016/j.procir.2024.05.011
Rachele Bertolini , Saeed Khademzadeh , Andrea Ghiotti , Stefania Bruschi
{"title":"Machining Effect On The Surface Integrity And SE Of Additively Manufactured And Heat-Treated Nitinol","authors":"Rachele Bertolini ,&nbsp;Saeed Khademzadeh ,&nbsp;Andrea Ghiotti ,&nbsp;Stefania Bruschi","doi":"10.1016/j.procir.2024.05.011","DOIUrl":"https://doi.org/10.1016/j.procir.2024.05.011","url":null,"abstract":"<div><p>Nitinol belongs to the class of smart materials that have attracted the attention of researchers in recent decades due to their new promising industrial applications. Because of the austenite/martensite phase transformation, nitinol offers unique properties: superelasticity and shape memory effect. The former ability can be exploited for sensing, actuating, and damping applications. On the other hand, additive manufacturing of nitinol has started kicking off unimaginable applications exploiting the complexity-for-free characteristics offered by the 3D printing processes. Although stand-alone research on additive manufacturing of nitinol is available, the impact of different manufacturing steps, such as machining and heat treatment, on its superelasticity is severely lacking.</p><p>This work used a powder bed fusion process using a laser beam to manufacture a Ni<sub>50.4</sub>Ti<sub>49.6</sub> austenitic alloy, which was subsequently heat-treated at different aging temperatures. Subsequently, turning operations were carried out at varying cutting speeds under cryogenic cooling conditions. An in-depth characterization of the surface integrity and SE alterations induced by manufacturing was conducted before and after machining.</p><p>The outcome of the work provides the best combination of heat treatment and machining parameters that allow for maximum surface integrity and SE.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124002154/pdf?md5=63be83816944b0f10ce7e464ff621f0b&pid=1-s2.0-S2212827124002154-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141328754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信