{"title":"Perfect Soliton Crystal Linear‐Wave Scattering Enables Spectrum Reconstruction","authors":"Hongyi Zhang, Liangjun Lu, Jianping Chen, Linjie Zhou","doi":"10.1002/lpor.202400926","DOIUrl":"https://doi.org/10.1002/lpor.202400926","url":null,"abstract":"Frequency translation induced by the nonlinear interaction between a soliton microcomb and a linear wave has been proposed to create a comb spectrum with broad spanning. Bragg scattering triggers the coherent four‐wave‐mixing process to generate new frequency components. Utilizing the perfect soliton crystal (PSC) linear‐wave scattering allows for the reconstruction of the comb spectrum, achieving spectral broadening and increasing the number of lines. By simultaneously separating two probe lasers on each edge of the PSC comb to stimulate the idler combs, the spectrum expands outward on both sides. Additionally, the study forms a pair of interleaved combs comprising PSC and idler combs with matching comb spacing to enhance the number of lines. The shape and efficiency of the idler comb are adjusted by varying the probe laser power and detuning. In comparison to the PSC comb with a 4% conversion efficiency, the idler comb exhibits a significantly higher conversion efficiency of nearly 50%. The findings demonstrate a straightforward method to reconstruct the PSC comb by introducing a probe laser to overcome the limitations imposed by microring properties.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"31 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhe Yuan, Yongchen Wang, Hangming Fan, Xiaoyang Liu, Mengfan Cheng, Qi Yang, Ming Tang, Deming Liu, Lei Deng
{"title":"Multichannel Parallel Mode Order Converter for On‐Chip Reconfigurable PDM‐MDM Transmission","authors":"Zhe Yuan, Yongchen Wang, Hangming Fan, Xiaoyang Liu, Mengfan Cheng, Qi Yang, Ming Tang, Deming Liu, Lei Deng","doi":"10.1002/lpor.202401689","DOIUrl":"https://doi.org/10.1002/lpor.202401689","url":null,"abstract":"The increasing demand for communication capacity has led to extensive exploration of hybrid multiplexing technologies that combine multiple wavelengths, modes, and polarization. Nevertheless, designing mode converters for hybrid multiplexing remains challenging. Reconfigurable and scalable multichannel parallel mode converters offer an attractive solution for efficient mode switching with a small footprint. In this paper, a compact and high‐performance dual‐polarization multichannel parallel mode order converter based on metamaterials is proposed, which consists of two components. One of the components is the flexible and compact multimode beam splitter designed by the rapidly convergent variable step size binary search algorithm. The other component is the dual‐polarization phase shifter that maximizes the feature size of the non‐subwavelength structure, significantly reducing the adverse effects of over‐etching. The experimental results demonstrate that the insertion loss of each mode is below 1.96 dB, while the crosstalk of each input mode is lower than −13.4 dB. The feasibility of high‐speed transmission is demonstrated by transmitting 30 GBuad 16‐quadrature amplitude modulation (QAM) signals on the device. This device is believed to be the first dual‐polarization multichannel parallel mode converter reported to date. This innovative device holds great potential for enhancing communication capacity in reconfigurable and scalable hybrid multiplexed transmission systems.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"14 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seho Lee, Abdulrahman Alsaadi, Tufail Hassan, Kyungwha Chung, Seongryeong Kim, Aleksandr Barulin, Gyoujin Cho, Chong Min Koo, Inki Kim
{"title":"Ultrafast Photonic PCR with All‐Solution‐Processed Ti3C2Tx‐Based Perfect Absorbers","authors":"Seho Lee, Abdulrahman Alsaadi, Tufail Hassan, Kyungwha Chung, Seongryeong Kim, Aleksandr Barulin, Gyoujin Cho, Chong Min Koo, Inki Kim","doi":"10.1002/lpor.202401600","DOIUrl":"https://doi.org/10.1002/lpor.202401600","url":null,"abstract":"Polymerase chain reaction (PCR) is a critical tool for nucleic acid amplification in molecular diagnosis and genetic analysis. Point‐of‐care (POC) devices are essential for controlling the spread of infectious diseases, but developing cost‐effective chip‐based PCR systems remains a challenge. This study introduces a photonic PCR chip featuring a perfect metamaterial absorber made of Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>x</jats:sub> MXene, silicon dioxide (SiO<jats:sub>2</jats:sub>), and gold nanoparticles (GNP) in a metal‐insulator‐metal (MIM) configuration. Fabricated via a solution‐processing approach, the absorber demonstrates 98% light absorption without the need for expensive lithographic methods. Utilizing a 940 nm infrared (IR) LED, the chip achieves efficient photothermal effects with heating rates of ≈8.3 °C s⁻¹ and cooling rates of ≈7.2 °C s⁻¹ during 30 cycles of λ‐DNA and SARS‐CoV‐2 amplification, transitioning from 65 °C to 95 °C. The low cost and high efficiency of the MXene‐based metamaterial absorbers highlight their potential as key components for ultrafast, energy‐efficient molecular diagnostic chips suitable for on‐site applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"75 1 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143071756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yingdi Pan, Lu Sun, Kaile Chen, Xingfeng Li, Xiong Ni, Pan Hu, Songyue Liu, Qi Lu, Xintao He, Jianwen Dong, Yikai Su
{"title":"Broadband Mode Coupling with Record‐High Fabrication Tolerance Using the Stimulated Raman Adiabatic Passage Technique","authors":"Yingdi Pan, Lu Sun, Kaile Chen, Xingfeng Li, Xiong Ni, Pan Hu, Songyue Liu, Qi Lu, Xintao He, Jianwen Dong, Yikai Su","doi":"10.1002/lpor.202401756","DOIUrl":"https://doi.org/10.1002/lpor.202401756","url":null,"abstract":"Coupled‐waveguide structures are fundamental in photonic integrated circuits for their wide applications in basic optical functions such as directional coupling, polarization handling, and mode manipulation. However, the couplings between waveguides usually suffer from high wavelength and structure sensitivity, which hinders the development of broadband and fabrication‐tolerant devices. Here, a new method based on the stimulated Raman adiabatic passage (STIRAP) procedure is proposed for various kinds of on‐chip mode manipulation such as mode conversion and multiplexing. The coupling process of the STIRAP system is thoroughly explored to reveal the topological nature of STIRAP. The experimental results prove that the mode‐division multiplexer employing the STIRAP scheme has low insertion losses of < 1.8 dB and intermodal crosstalk of < −17.3 dB for all four mode channels over a 100‐nm wavelength range (1480–1580 nm). Thanks to the topological protection of the mode coupling, the proposed multiplexer exhibits unprecedented fabrication tolerance (−80–100 nm) to the structural deviations in waveguide width and gap distance. This work provides an intriguing approach to expanding the working bandwidth and improving the fabrication tolerance of coupled‐waveguide devices, which may find applications in diverse fields including optical communications, optical computing, quantum information processing and beyond.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"146 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143071830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monolithic Spin‐Multiplexing Metalens for Dual‐Functional Imaging","authors":"Zhenyu Xing, Zhelin Lin, Niu Liu, Hao Gao, Yuhui Hu, Zeyang Liu, Zijian Jiang, Xinliang Zhang, Cheng Zhang","doi":"10.1002/lpor.202401993","DOIUrl":"https://doi.org/10.1002/lpor.202401993","url":null,"abstract":"Optical microscopic imaging technology is an essential tool for exploring and understanding the microcosmic realm. Among various imaging modes, bright‐field and spiral‐phase‐contrast imaging are widely used, each capable of extracting distinct morphological information from target objects. However, conventional microscopic imaging devices and systems typically operate in a single mode or require additional modules for mode switching. Here, we present a monolithic photonic spin‐multiplexing metalens operating in the red and near‐infrared regions, which leverages a spin‐multiplexed point spread function to seamlessly switch between bright‐field and spiral‐phase‐contrast imaging modes by simply adjusting the spin state of illumination light. The device demonstrates operational efficiency of up to 80% and imaging resolution better than 4.4 µm (228 lp mm<jats:sup>−1</jats:sup>) in both modes. The metalens's dual‐functional imaging performance is validated with both amplitude‐type (custom‐made metallic patterns) and phase‐type (frog tongue epithelium cells and onion epidermal cells) objects. This work provides a viable solution for compact, lightweight, and easily switchable multi‐functional microscopic imaging systems, opening new avenues for applications in biomedical imaging, clinical diagnostics, and material characterization.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"38 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143071757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultra‐Flat Broadband Low‐Noise Frequency Comb in a Fiber Fabry‐Perot Resonator","authors":"Tieying Li, Jianping Chen, Kan Wu","doi":"10.1002/lpor.202400180","DOIUrl":"https://doi.org/10.1002/lpor.202400180","url":null,"abstract":"A low‐noise microcomb with a flat and broadband spectrum is highly desired for various applications, including spectroscopy, sensing, and communications. However, both dissipative Kerr solitons (DKSs) and platicons have limitations in spectrum flatness due to their sech‐shaped profile or peaks of dispersive waves. In this study, an ultra‐flat and broadband microcomb are presented in a fiber Fabry‐Perot (F‐P) resonator. By optimizing the group velocity dispersion (GVD) and third‐order dispersion (TOD), an ultra‐flat low‐noise comb spectrum is obtained with a −1 dB bandwidth of up to 58 nm and a −30 dB bandwidth of 190 nm. Additionally, a method to control the contribution of the stimulated Raman scattering (SRS) effect by adjusting the desynchronization frequency to meet the phase‐matching condition is proposed. With the contribution from SRS, the −30 dB bandwidth is further extended to 230 nm with more than 7700 comb lines. Furthermore, a detailed investigation is conducted on the interaction among GVD, TOD, SRS, and Kerr nonlinearity, revealing the generation mechanism of such an ultra‐flat broadband comb spectrum. The work will provide valuable insights for the advancement of dispersion‐engineered resonators and further stimulate the study of the effects of SRS in fiber and integrated resonators are anticipated.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"39 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143071751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-Shot on-Chip Diffractive Speckle Spectrometer with High Spectral Channel Density","authors":"Zimeng Zhang, Qinghai Song, Shumin Xiao, Ke Xu","doi":"10.1002/lpor.202401987","DOIUrl":"https://doi.org/10.1002/lpor.202401987","url":null,"abstract":"The research on chip-scale spectrometers is driven by the growing demand for miniaturized and integrated spectral sensors. The performance trade-off between spectral resolution and bandwidth is one of the primary challenges for the community. While substantial progress has been made toward a vast number of spectral channels to overcome this issue, they either relied on sophisticated tuning mechanisms or required huge chip areas. In this work, a single-shot spectrometer is demonstrated based on all passive on-chip diffractive metasurfaces which is able to create the speckle pattern with richness of spectral information. By scaling the diffractive structure to three layers of metasurfaces, the number of spectral channels resolved from the speckle can be significantly increased due to the cascaded diffraction behaviors. The device is fabricated via a standard silicon photonic foundry with CMOS compatible process. A measured resolution of 47 pm is achieved across the bandwidth of 40 nm, yielding up to 851 spectral channels within a compact footprint of 150 µm × 300 µm. The corresponding spectral channel density reaches 18911 ch mm<sup>−2</sup>. It provides a possible means to develop single-shot and compact on-chip spectrometers beyond the resolution-bandwidth limit.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"15 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jungho Han, Yeonsoo Lim, Jeheon Lee, Seongheon Kim, Young Chul Jun
{"title":"Maximized Enhancement of Polarized and Unpolarized Emissions via Critical Coupling in Brillouin Zone Folding Metasurfaces","authors":"Jungho Han, Yeonsoo Lim, Jeheon Lee, Seongheon Kim, Young Chul Jun","doi":"10.1002/lpor.202401923","DOIUrl":"https://doi.org/10.1002/lpor.202401923","url":null,"abstract":"Critical coupling can induce maximized field enhancement in resonant optical modes. Therefore, it is important for various photonic technologies. Here, it is shown that directional light sources with highly enhanced emission intensities can be realized via critical coupling. A clear experimental demonstration of maximized emission enhancement is presented in quantum dot (QD)-coated Brillouin zone folding (BZF) metasurfaces. BZF dielectric metasurfaces support guided-mode resonances, where the radiative quality factor can be gradually tuned by structural parameters, allowing critical coupling to occur at the QD emission wavelength. Maximized enhancements of polarized and unpolarized emissions are demonstrated in the normal direction, resulting in highly enhanced, directional, and narrow-angled emissions. The investigations indicate that light emission from quantum emitters can be optimized via critical coupling and that BZF metasurfaces can provide a highly tunable platform for both polarization-sensitive and polarization-insensitive critical coupling. Maximized field enhancement and highly enhanced light–matter interactions in BZF metasurfaces are important for a wide range of photonic technologies such as light sources, photodetectors, sensors, nonlinear enhancement, and quantum photonic devices.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"74 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Component/Stimulus-Dependent Multi-Exciton Emission in Zr(IV)-Based Organic Metal Halides Triggered by Supramolecular Assembly and Antimony Doping","authors":"Hui Peng, Wei Tian, Qilin Wei, Linghang Kong, Guang Dai, Jialong Zhao, Bingsuo Zou","doi":"10.1002/lpor.202401724","DOIUrl":"https://doi.org/10.1002/lpor.202401724","url":null,"abstract":"Recently, Sb<sup>3+</sup>-activated 0D Zr(IV)-based metal halides have gained enormous attention for their unique optical properties. However, realizing efficient white emission and multiple reversible emissions in a single system remains a great challenge. Parallelly, the currently reported Sb<sup>3+</sup>-activated Zr(IV)-based organic metal halides are mainly through aimless regulation of the type of A-site organic cations, severely limiting their development. Herein, all-inorganic Cs<sub>2</sub>ZrCl<sub>6</sub>:Sb<sup>3+</sup> is employed as the conformational model, three different compounds of Sb<sup>3+</sup>-doped [18-crown-6@A]<sub>2</sub>ZrCl<sub>6</sub> (A = K, Rb, Cs) are developed via supramolecular assembly. All compounds show efficient tunable white emission with luminous efficiency of 91.28% for [18-crown-6@K]<sub>2</sub>ZrCl<sub>6</sub>:Sb<sup>3+</sup>, 84.84% for [18-crown-6@Rb]<sub>2</sub>ZrCl<sub>6</sub>:Sb<sup>3+</sup>, and 78.63% for [18-crown-6@Cs]<sub>2</sub>ZrCl<sub>6</sub>:Sb<sup>3+</sup>, which shall stem from Sb<sup>3+</sup>-induced multi-exciton emission in [SbCl<sub>6</sub>]<sup>3−</sup> octahedron. Particularly, the strong supramolecular interaction can enhance the structural rigidity and suppress nonradiative transitions, which is the dominated reason for [18-crown-6@A]<sub>2</sub>ZrCl<sub>6</sub>:Sb<sup>3+</sup> exhibits efficient emission. The component/excitation/temperature/moisture-dependent multiple reversible PL switching characteristics are observed in Sb<sup>3+</sup>-doped [18-crown-6@A]<sub>2</sub>ZrCl<sub>6</sub>, which allows to demonstrate their applications in advanced optical anti-counterfeiting and information encryption. Moreover, a single-component white light-emitting diode is also fabricated, which shows a high color rendering index of 96.1. Therefore, the work provides a feasible scheme for designing organic Zr(IV) halides with fascinating optical properties.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"60 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MTiTaO6: Cr3+ (M = Al3+, Ga3+, Sc3+) Phosphors with Ultra‐Broadband Excitation Spectra and Enhanced Near‐Infrared Emission for Solar Cells","authors":"Lipeng Jiang, Liangliang Zhang, Xue Jiang, Jing Wang, Junji Zhang, Weiwei Jiang, Guojun Li, Hongbo Yu, Wei Si, Zhongxiang Shi, Zhihua Zhang, Yanjing Su","doi":"10.1002/lpor.202401854","DOIUrl":"https://doi.org/10.1002/lpor.202401854","url":null,"abstract":"Achieving ultra‐broadband absorption and enhancing the near‐infrared (NIR) emitting properties of NIR phosphors is a key challenge to realize its multiple applications, such as solar spectrum conversion, spectral analysis, and night vision. Here, a novel NIR phosphor system MTiTaO<jats:sub>6</jats:sub>: Cr<jats:sup>3+</jats:sup> (<jats:italic>M</jats:italic> = Al<jats:sup>3+</jats:sup>, Ga<jats:sup>3+</jats:sup>, Sc<jats:sup>3+</jats:sup>), with an excitation spectrum as broad as 421 nm and enhanced NIR emission is reported. It is the widest excitation spectrum among the known Cr<jats:sup>3+</jats:sup>‐doped NIR phosphors. Structural and spectroscopic analysis shows that the ultra‐broadband excitation spectrum originates from the overlap of multiple luminescence centers. Additionally, the emission peak is red‐shifted from 816 to 871 nm with increasing M ion radius, and the emission intensity is enhanced, which not only makes the emission spectra more compatible with the response curve of c‐Si solar cells, but also gives it an advantage in NIR spectroscopy applications. Comparison of the excitation spectra with the solar spectrum and spectral analysis of the emission spectra of water and alcohol demonstrate its promising applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"15 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}