{"title":"Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation","authors":"Jun Xia, Jiaxing Xu, Lei Hu, Xiaoyan Liu","doi":"10.1080/10826068.2015.1135464","DOIUrl":"https://doi.org/10.1080/10826068.2015.1135464","url":null,"abstract":"ABSTRACT Poly(L-malic acid) (PMA) is a natural polyester with many attractive properties for biomedical application. However, the cost of PMA production is high when glucose is used as a carbon source. To solve this problem, cane molasses as a low-cost feedstock was applied for the production of PMA. Six pretreatment methods were applied to cane molasses before fermentation. Pretreatment with combined tricalcium phosphate, potassium ferrocyanide, and sulfuric acid (TPFSA) removed significant amounts of metal ions from cane molasses. The PMA concentration increased from 5.4 g/L (untreated molasses) to 36.9 g/L (TPFSA-pretreated molasses) after fermentation in shake flasks. A fed-batch fermentation strategy was then developed. In this method, TPFSA-pretreated cane molasses solution was continuously fed into the fermentor to maintain the total sugar concentration at 20 g/L. This technique generated approximately 95.4 g/L PMA with a productivity of 0.57 g/L/hr. The present study indicated that fed-batch fermentation using pretreated cane molasses is a feasible technique for producing high amounts of PMA.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86491401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trehalose phosphate synthase overexpression in Parachlorella kessleri improves growth and photosynthetic performance under high light conditions","authors":"J. Rathod, G. Prakash, Chaitali Vira, A. Lali","doi":"10.1080/10826068.2015.1135465","DOIUrl":"https://doi.org/10.1080/10826068.2015.1135465","url":null,"abstract":"ABSTRACT Parachlorella kessleri is a promising oil-bearing marine alga which shows decreased growth under high light stress. Osmolytes are known to relieve stress by protecting the cell membrane, proteins, and enzymes. Enhanced production of osmolyte (trehalose) was thus used to relieve stress in P. kessleri by overexpression of trehalose phosphate synthase (TPS) gene. Transformed P. kessleri was grown under different light regimes to study the effect of trehalose overproduction on growth. Study of one of the TPS transformants showed increased trehalose as well as increased biomass and decreased pigments, reactive oxygen species, and lipid peroxidation of cell membrane. The improved photosynthetic performance of the transformant was also signified by pulse-amplitude-modulated fluorometric analysis. All of these factors reveal improved stress tolerance under high light conditions by increased trehalose accumulation due to TPS overexpression in P. kessleri.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75738880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carolina Ortiz-Enriquez, A. J. Romero-Díaz, A. V. Hernández-Moreno, H. F. Cueto-Rojas, M. Miranda-Hernández, C. López-Morales, N. O. Pérez, Rodolfo Salazar-Ceballos, Norberto Cruz-García, L. F. Flores-Ortiz, E. Medina-Rivero
{"title":"Optimization of a recombinant human growth hormone purification process using quality by design","authors":"Carolina Ortiz-Enriquez, A. J. Romero-Díaz, A. V. Hernández-Moreno, H. F. Cueto-Rojas, M. Miranda-Hernández, C. López-Morales, N. O. Pérez, Rodolfo Salazar-Ceballos, Norberto Cruz-García, L. F. Flores-Ortiz, E. Medina-Rivero","doi":"10.1080/10826068.2015.1135467","DOIUrl":"https://doi.org/10.1080/10826068.2015.1135467","url":null,"abstract":"ABSTRACT This work describes a strategy to optimize a downstream processing of a recombinant human growth hormone (rhGH) by incorporating a quality by design approach toward meeting higher quality specifications. The optimized process minimized the presence of impurities and degradation by-products during manufacturing by the establishment of in-process controls. Capillary zone electrophoresis, reverse phase, and size-exclusion chromatographies were used as analytical techniques to establish new critical process parameters for the solubilization, capture, and intermediate purification steps aiming to maintain rhGH quality by complying with pharmacopeial specifications. The results indicated that the implemented improvements in the process allowed the optimization of the specific recovery and purification of rhGH without compromising its quality. In addition, this optimization facilitated the stringent removal of the remaining impurities in further polishing stages, as demonstrated by the analysis of the obtained active pharmaceutical ingredient.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83246238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cryoprotective properties and preliminary characterization of exopolysaccharide (P-Arcpo 15) produced by the Arctic bacterium Pseudoalteromonas elyakovii Arcpo 15","authors":"Sung Jin Kim, Byung-Gee Kim, H. Park, J. Yim","doi":"10.1080/10826068.2015.1015568","DOIUrl":"https://doi.org/10.1080/10826068.2015.1015568","url":null,"abstract":"ABSTRACT Twenty-two bacterial strains that secrete exopolysaccharides (EPS) were isolated from marine samples obtained from the Chukchi Sea in the Arctic Ocean; of these, seven strains were found to be capable of producing cryoprotective EPS. The ArcPo 15 strain was isolated based on its ability to secrete large amounts of EPS, and was identified as Pseudoalteromonas elyakovii based on 16S rDNA analysis. The EPS, P-ArcPo 15, was purified by protease treatment and gel filtration chromatography. The purified EPS (P-ArcPo 15) had a molecular mass of 1.7 × 107 Da, and its infrared spectrum showed absorption bands of hydroxyl and carboxyl groups. The principal sugar components of P-ArcPo 15 were determined to be mannose and galacturonic acid, in the ratio of 3.3:1.0. The cryoprotective properties of P-ArcPo 15 were characterized by an Escherichia coli viability test. In the presence of 0.5% (w/v) EPS, the survival percentage of E. coli cells was as high as 94.19 ± 7.81% over five repeated freeze–thaw cycles. These biochemical characteristics suggest that the EPS P-ArcPo 15 may be useful in the development of cryoprotectants for biotechnological purposes, and we therefore assessed the utility of this novel cryoprotective EPS.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90360135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of β-N-acetylglucosaminidase from a marine Pseudoalteromonas sp. for application in N-acetyl-glucosamine production","authors":"H. Park, J. Yim, Hyunro Park, Dockyu Kim","doi":"10.1080/10826068.2015.1135459","DOIUrl":"https://doi.org/10.1080/10826068.2015.1135459","url":null,"abstract":"ABSTRACT The psychrotolerant Pseudoalteromonas issachenkonii PAMC 22718 was isolated for its high exo-acting chitinase activity in the Kara Sea, Arctic. An exo-acting chitinase (W-Chi22718) was homogeneously purified from the culture supernatant of PAMC 22718, the molecular weight of which was estimated to be approximately 112 kDa. Due to its β-N-acetylglucosaminidase activity, W-Chi22718 was able to produce N-acetyl-D-glucosamine (GlcNAc) monomers from chitin oligosaccharide substrates. W-Chi22718 displayed chitinase activity from 0 to 37°C (optimal temperature of 30°C) and maintained activity from pH 6.0 to 9.0 (optimal pH of 7.6). W-Chi22718 exhibited a relative activity of 13 and 35% of maximal activity at 0 and 10°C, respectively, which is comparable to the activities of previously characterized, cold-adapted bacterial chitinases. W-Chi22718 activity was enhanced by K+, Ca2+, and Fe2+, but completely inhibited by Cu2+ and SDS. We found that W-Chi22718 can produce much more (GlcNAcs) from colloidal chitin, working together with previously characterized cold-active endochitinase W-Chi21702. Genome sequencing revealed that the corresponding gene (chi22718_IV) was 2,856 bp encoding a 951 amino acid protein with a calculated molecular weight of approximately 102 kDa.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89510911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Das, Prerna Khawas, Dibyakanta Seth, T. Miyaji, S. C. Deka
{"title":"Optimization of the extraction of phenolic compounds from Cyclosorus extensa with solvents of varying polarities","authors":"A. Das, Prerna Khawas, Dibyakanta Seth, T. Miyaji, S. C. Deka","doi":"10.1080/10826068.2015.1135457","DOIUrl":"https://doi.org/10.1080/10826068.2015.1135457","url":null,"abstract":"ABSTRACT The leaves of Cyclosorus extensa are used in the preparation of rice beer in Assam, India. The optimal conditions of time and temperature of fermentation for extraction of bioactive compounds from the dried leaves were obtained using response surface methodology. The central composite rotatable design was used and 13 experimental runs based on two-factor-five-level design were generated and performed for each of the solvents. The independent variables were extraction time (12 and 48 h) and temperature (25 and 55°C). The responses studied were total polyphenol content, radical scavenging activity, antibacterial activity, and antifungal activity. The analysis of variance of the test data was performed and the sequential sum of squares, F-value, R2, and adjusted R2 were deduced. The predicted models for all the response variables were adequately fitted to the observed experimental data (p ≤ 0.001). The maximum extraction of bioactive compounds under the optimum conditions of extraction temperature and time for hexane, ethyl acetate, methanol, and distilled water were found to be 25°C for 29.43 h, 28.28°C for 41.27 h, 43.95°C for 29.61 h, and 55.00°C for 48.00 h, respectively. It was also observed that the solubility of the polyphenols was higher in methanol, followed by ethyl acetate, and the highest antibacterial activity against Escherichia coli was shown by the ethyl acetate extracts.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75890269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Partial purification and characterization of bacteriocin produced by Enterococcus faecalis DU10 and its probiotic attributes","authors":"Venkatesh Perumal, Ayyanna Repally, Ankaiah Dasari, Arul Venkatesan","doi":"10.1080/10826068.2015.1135451","DOIUrl":"https://doi.org/10.1080/10826068.2015.1135451","url":null,"abstract":"ABSTRACT A novel bacteriocin produced by avian duck isolated lactic acid bacterium Enterococcus faecalis DU10 was isolated. This bacteriocin showed a broad spectrum of antibacterial activity against important food-borne pathogens and was purified by size exclusion chromatography followed by reverse-phase high-performance liquid chromatography in a C-18 column. Tricine–SDS PAGE revealed the presence of a band with an estimated molecular mass of 6.3 kDa. The zymogram clearly linked the antimicrobial activity with this band. This result was further confirmed by mass-assisted laser desorption ionization time-of-flight mass spectrometry, since a sharp peak corresponding to 6.313 kDa was detected and the functional groups were revealed by Fourier transform infrared spectroscopy. Bacteriocin DU10 activity was found sensitive to proteinase-K and pepsin and partially affected by trypsin and α-chymotrypsin. The activity of bacteriocin DU10 was partially resistant to heat treatments ranging from 30 to 90°C for 30 min. It also withstood a treatment at 121°C for 10 min. Cytotoxicity of bacteriocin DU10 by methyl-thiazolyl-diphenyl-tetrazolium bromide assay showed that the viability of HT-29 and HeLa cells decreased 60 ± 0.7% and 43 ± 4.8%, respectively, in the presence of 3,200 AU/mL of bacteriocin. The strain withstood 0.3% w/v of bile oxgall and pH 2 affected the bacterial growth between 2 and 4 hr of incubation. Adhesion properties examined with HT-29 cell line showed 69.85% initial population of strain E. faecalis DU10, which was found to be strongly adhered to this cell line. These results conclude bacteriocin DU10 may be used as a potential biopreservative and E. faecalis DU10 may be used as a potential probiont to control Salmonella infections.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88631294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Wang, Tingting Zou, Minghui Xiang, Chenzhong Jin, Xuejiao Zhang, Yong Chen, Q. Jiang, Yihong Hu
{"title":"Purification and characterization of a soluble glycoprotein from garlic (Allium sativum) and its in vitro bioactivity","authors":"Yan Wang, Tingting Zou, Minghui Xiang, Chenzhong Jin, Xuejiao Zhang, Yong Chen, Q. Jiang, Yihong Hu","doi":"10.1080/10826068.2015.1135454","DOIUrl":"https://doi.org/10.1080/10826068.2015.1135454","url":null,"abstract":"ABSTRACT A soluble glycoprotein was purified to homogeneity from ripe garlic (Allium sativum) bulbs using ammonium sulfate precipitation, Sephadex G-100 gel filtration, and diethylaminoethyl-52 cellulose anion-exchange chromatography. A native mass of 55.7 kDa estimated on gel permeation chromatography and a molecular weight of 13.2 kDa observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis supported that the glycoprotein is a homotetramer. β-Elimination reaction result suggested that the glycoprotein is an N-linked type. Fourier-transform infrared spectroscopy proved that it contains sugar. Gas chromatography–mass spectrometer analysis showed that its sugar component was galactose. The glycoprotein has 1,1-diphenyl-2-picrylhydrazil free radical scavenging activity and the peroxidation inhibition ability to polyunsaturated fatty acid. These results indicated that the glycoprotein has potential for food additives, functional foods, and even biotechnological and medical applications.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76166224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue-fang Chen, Chao Huang, L. Xiong, Bo Wang, Gao-xiang Qi, Xiaoqing Lin, Can Wang, Xindong Chen
{"title":"Use of elephant grass (Pennisetum purpureum) acid hydrolysate for microbial oil production by Trichosporon cutaneum","authors":"Xue-fang Chen, Chao Huang, L. Xiong, Bo Wang, Gao-xiang Qi, Xiaoqing Lin, Can Wang, Xindong Chen","doi":"10.1080/10826068.2015.1135453","DOIUrl":"https://doi.org/10.1080/10826068.2015.1135453","url":null,"abstract":"ABSTRACT Elephant grass (Pennisetum purpureum) dilute acid hydrolysate contains 34.6 g/L total sugars. The potential of lipid production by oleaginous yeast Trichosporon cutaneum grown on elephant grass acid hydrolysate was investigated for the first time. During the fermentation process on the elephant grass acid hydrolysate, glucose, xylose, and arabinose could be well utilized as carbon sources by T. cutaneum. Interestingly, xylose was almost no use before glucose was consumed completely. This illustrated that simultaneous saccharification of xylose and glucose by T. cutaneum did not occur on elephant grass acid hydrolysate. The highest biomass, lipid content, lipid yield, and lipid coefficient of T. cutaneum were measured after the sixth day of fermentation and were 22.76 g/L, 24.0%, 5.46 g/L, and 16.1%, respectively. Therefore, elephant grass is a promising raw material for microbial oil production by T. cutaneum.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90022210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel technology coupling extraction and foam fractionation for separating the total saponins from Achyranthes bidentata","authors":"Linlin Ding, Yanji Wang, Zhaoliang Wu, Wei Liu, Rui Li, Yanyan Wang","doi":"10.1080/10826068.2015.1135448","DOIUrl":"https://doi.org/10.1080/10826068.2015.1135448","url":null,"abstract":"ABSTRACT A novel technology coupling extraction and foam fractionation was developed for separating the total saponins from Achyranthes bidentata. In the developed technology, the powder of A. bidentata was loaded in a nylon filter cloth pocket with bore diameter of 180 µm. The pocket was fixed in the bulk liquid phase for continuously releasing saponins. Under the optimal conditions, the concentration and the extraction rate of the total saponins in the foamate by the developed technology were 73.5% and 416.2% higher than those by the traditional technology, respectively. The foamates obtained by the traditional technology and the developed technology were analyzed by ultraperformance liquid chromatography–mass spectrometry to determine their ingredients, and the results appeared that the developed technology exhibited a better performance for separating saponins than the traditional technology. The study is expected to develop a novel technology for cost effectively separating plant-derived materials with surface activity.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82171296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}