K. Divakar, M. Suryia Prabha, G. Nandhinidevi, P. Gautam
{"title":"Kinetic characterization and fed-batch fermentation for maximal simultaneous production of esterase and protease from Lysinibacillus fusiformis AU01","authors":"K. Divakar, M. Suryia Prabha, G. Nandhinidevi, P. Gautam","doi":"10.1080/10826068.2016.1244685","DOIUrl":"https://doi.org/10.1080/10826068.2016.1244685","url":null,"abstract":"ABSTRACT The simultaneous production of intracellular esterase and extracellular protease from the strain Lysinibacillus fusiformis AU01 was studied in detail. The production was performed both under batch and fed-batch modes. The maximum yield of intracellular esterase and protease was obtained under full oxygen saturation at the beginning of the fermentation. The data were fitted to the Luedeking–Piret model and it was shown that the enzyme (both esterase and protease) production was growth associated. A decrease in intracellular esterase and increase in the extracellular esterase were observed during late stationary phase. The appearance of intracellular proteins in extracellular media and decrease in viable cell count and biomass during late stationary phase confirmed that the presence of extracellular esterase is due to cell lysis. Even though the fed-batch fermentation with different feeding strategies showed improved productivity, feeding yeast extract under DO-stat fermentation conditions showed highest intracellular esterase and protease production. Under DO-stat fed-batch cultivation, maximum intracellular esterase activity of 820 × 103 U/L and extracellular protease activity of 172 × 103 U/L were obtained at the 16th hr. Intracellular esterase and extracellular protease production were increased fivefold and fourfold, respectively, when compared to batch fermentation performed under shake flask conditions.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"38 1","pages":"323 - 332"},"PeriodicalIF":0.0,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79393312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of enzyme-assisted improvement of polyphenols and free radical scavenging activity in red rice bran: A statistical and neural network-based approach","authors":"Ashish A. Prabhu, A. Jayadeep","doi":"10.1080/10826068.2016.1252926","DOIUrl":"https://doi.org/10.1080/10826068.2016.1252926","url":null,"abstract":"ABSTRACT The current study is focused on optimizing the parameters involved in enzymatic processing of red rice bran for maximizing total polyphenol (TP) and free radical scavenging activity (FRSA). The sequential optimization strategies using central composite design (CCD) and artificial neural network (ANN) modeling linked with genetic algorithm (GA) was performed to study the effect of incubation time (60–90 min), xylanase concentration (5–10 mg/g), cellulase concentration (5–10 mg/g) on the response, i.e., total polyphenol and FRSA. The result showed that incubation time has a negative effect on the response, while the square effect of xylanase and cellulase showed positive effect on the response. A maximum TP of 2,761 mg ferulic acid Eq/100 g bran and FRSA of 778.4 mg Catechin Eq/100 g bran was achieved with incubation time (min) = 60.491; xylanase (mg/g) = 5.4633; cellulase (mg/g) = 11.5825. Furthermore, ANN-GA-based optimization showed better predicting capabilities as compared to CCD.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"41 1","pages":"397 - 405"},"PeriodicalIF":0.0,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79080562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Ismail, Tana Poorani Gurusamy, H. Ramachandran, Abdullah Al-Ashraf Amirul
{"title":"Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer and antimicrobial yellow pigmentation from Cupriavidus sp. USMAHM13 with antibiofilm capability","authors":"I. Ismail, Tana Poorani Gurusamy, H. Ramachandran, Abdullah Al-Ashraf Amirul","doi":"10.1080/10826068.2016.1252925","DOIUrl":"https://doi.org/10.1080/10826068.2016.1252925","url":null,"abstract":"ABSTRACT Antibiofilm polymers have the ability to inhibit bacterial biofilm formation, which is known to occur ubiquitously in the environment and pose risks of infection. In this study, production of P(3HB-co-4HB) copolymer and antimicrobial yellow pigment from Cupriavidus sp. USMAHM13 are enhanced through medium optimization. Before the improvement of yellow pigment production, screening for the best additional supplement was performed resulting in high-yield yellow pigmentation using yeast extract with optimum concentration of 2 g/L. Effects of different concentrations of 1,4-butanediol, ammonium acetate, and yeast extract were studied using central composite design. Under optimal conditions, 53 wt% of polyhydroxyalkanoate (PHA) content, 0.35 g/L of pigment concentration, and 5.87 g/L of residual biomass were achieved at 0.56 wt% C of 1,4-butanediol, 1.14 g/L of ammonium acetate, and 2 g/L of yeast extract. Antibiofilm tests revealed that the yellow pigment coated on P(3HB-co-4HB) copolymer had significant effect on the inhibition of bacteria proliferation and colonization from 6 hr onward reaching 100% inhibition by 12 hr, hence effectively inhibiting the biofilm formation.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"384 1","pages":"388 - 396"},"PeriodicalIF":0.0,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74964001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanen Mallek-Fakhfakh, J. Fakhfakh, N. Masmoudi, Fatma Rezgui, A. Gargouri, H. Belghith
{"title":"Agricultural wastes as substrates for β-glucosidase production by Talaromyces thermophilus: Role of these enzymes in enhancing waste paper saccharification","authors":"Hanen Mallek-Fakhfakh, J. Fakhfakh, N. Masmoudi, Fatma Rezgui, A. Gargouri, H. Belghith","doi":"10.1080/10826068.2016.1252928","DOIUrl":"https://doi.org/10.1080/10826068.2016.1252928","url":null,"abstract":"ABSTRACT In the present study, we investigated a potent extracellular β-glucosidases secreted by the thermophilic fungal strain AX4 of Talaromyces thermophilus, isolated from Tunisian soil samples. This strain was selected referring to the highest thermostability of its β-glucosidases compared to the other fungal isolates. The β-glucosidase production was investigated by submerged fermentation. The optimal temperature and initial pH for maximum β-glucosidase production were 50°C and 7.0, respectively. Several carbon sources were assayed for their effects on β-glucosidase production, significant yields were obtained in media containing lactose 1% (3.0 ± 0.36 U/ml) and wheat bran 2% (4.0 ± 0.4 U/ml). The combination of wheat bran at 2% and lactose at 0.8% as carbon source enhanced β-glucosidase production, which reached 8.5 ± 0.28 U/ml. Furthermore, the β-glucosidase-rich enzymatic juice of T. thermophilus exhibited significant synergism with Trichoderma reesei (Rut C30) cellulases for pretreated waste paper (PWP) hydrolysis. Interestingly, the use of this optimal enzymatic cocktail increased 4.23 fold the glucose yield after saccharification of waste paper. A maximum sugar yield (94%) was reached when using low substrate (2%) and enzyme loading (EC1).","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"80 1","pages":"414 - 423"},"PeriodicalIF":0.0,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87219466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Production, characterization, and immobilization of partially purified surfactant–detergent and alkali-thermostable protease from newly isolated Aeromonas caviae","authors":"Sumitra Datta, G. Menon, Bincy Varughese","doi":"10.1080/10826068.2016.1244688","DOIUrl":"https://doi.org/10.1080/10826068.2016.1244688","url":null,"abstract":"ABSTRACT Proteolytic Aeromonas caviae P-1-1 growing at wide-ranging pH (7.0–11.0) and moderate salinity (0–5% NaCl) was isolated from cattle shed of Thanjavur, India. It produced lipase, gelatinase, and polyhydroxybutyrate. Different culture conditions, incubation time, carbon and nitrogen sources, vitamins, amino acids, surfactants, and metal ions for optimal growth and protease production of P-1-1 were examined. Maximum protease (0.128 U/mL) production was achieved with 1% fructose, 1% yeast extract, 0.1% ammonium sulfate, 3% NaCl, 0.1% CaCl2 · 2H2O, 1% glycine, 0.1% vitamin E, and 0.1% Tween-40 at pH 8.0 after 42 hr of incubation at 37°C. It was active over broad range of pH (7.0–12.0), temperature (15–100°C), and salinity (0–9% NaCl) with optima at pH 10.0, 55°C, and 3% NaCl. It retained 65 and 48% activities at pH 12.0 and 100°C, respectively. Partially purified protease was highly stable (100%) within pH range 7.0–12.0 and salinities of 0–5% NaCl for 48 hr. Cu2+, Mn2+, Co2+, and Ca2+ did not inhibit its activity. Its stability at extreme pHs, temperatures, and in the presence of surfactants and commercial detergents suggests its possible application in laundry detergents. Partially purified protease was immobilized and reused. This is the first report of alkali-thermotolerant, surfactant–detergent-stable partially purified extracellular protease from A. caviae.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"40 1","pages":"349 - 356"},"PeriodicalIF":0.0,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81299981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Chaikaew, Apinun Kanpiengjai, Jenjira Intatep, Kridsada Unban, P. Wongputtisin, Goro Takata, C. Khanongnuch
{"title":"X-ray-induced mutation of Bacillus sp. MR10 for manno-oligosaccharides production from copra meal","authors":"S. Chaikaew, Apinun Kanpiengjai, Jenjira Intatep, Kridsada Unban, P. Wongputtisin, Goro Takata, C. Khanongnuch","doi":"10.1080/10826068.2016.1252929","DOIUrl":"https://doi.org/10.1080/10826068.2016.1252929","url":null,"abstract":"ABSTRACT The present study demonstrates the effectiveness of X-ray radiation in strain improvement for defective lipase production by Bacillus sp. MR10 for further application in the fermentative production of manno-oligosaccharides (MOS) from agricultural by-product, defatted copra meal (DCM). The mutants obtained were screened based on their defective lipase activity together with their β-mannanase production performance. Among 10 selected mutants, the strain M7 was the highest promising mutant regarding the smallest lipase activity (0.05 U/ml) and the retained β-mannanase activity similar to the parental strain (22 U/ml) were detected. The mutant M7 effectively hydrolyzed DCM to MOS with low-degree of polymerization (DP) oligomers including mannotriose (M3), mannotetraose (M4), and mannopentose (M5) as the main products. Although the pattern of DCM hydrolysis products of mutant M7 was distinctly different from wild type, the biochemical and catalytic properties of purified β-mannanase of mutant were similar to those of wild type. Both purified β-mannanases with apparent molecular mass of 38 kDa displayed optimal activity at pH 5–7 and 45–55°C. Co2+ and Hg2+ nearly completely inhibited activities of both enzymes, whereas Ba2+, Fe3+, and 2-mercaptoethanol obviously activated enzyme activities. Both enzymes showed high specificity for locust bean gum, konjac mannan, DCM, and guar gum. Thus, the mutant M7 has a potential for commercial production of high-quality MOS from low-cost DCM for further application in the feed industry.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"26 1","pages":"424 - 433"},"PeriodicalIF":0.0,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86053314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sepideh Khazeni, A. Hatamian-Zarmi, F. Yazdian, Z. Mokhtari-Hosseini, B. Ebrahimi-Hosseinzadeh, Behnam Noorani, Ghassem Amoabedini, M. Soudi
{"title":"Production of nanocellulose in miniature-bioreactor: Optimization and characterization","authors":"Sepideh Khazeni, A. Hatamian-Zarmi, F. Yazdian, Z. Mokhtari-Hosseini, B. Ebrahimi-Hosseinzadeh, Behnam Noorani, Ghassem Amoabedini, M. Soudi","doi":"10.1080/10826068.2016.1252923","DOIUrl":"https://doi.org/10.1080/10826068.2016.1252923","url":null,"abstract":"ABSTRACT Bacterial cellulose (BC) is a very fascinating microbial biopolymer which is mainly produced by Gluconacetobacter xylinum. Optimization of BC production by G. xylinum was performed based on scale-down studies in miniature-bioreactor and response surface methodology in which the optimum pH value (6.5) and shaking rate (50 rpm) were obtained. The static culture condition for BC production has newly been defined. Nanostructure of BC includes nanofibers up to (60 nm) and nanoporosity up to (265 nm) was observed by scanning electron microscopy. By Fourier transform infrared spectroscopy study, the most expected BC interaction is nucleophilic interaction. MTT assay showed high biocompatibility. Appropriate mechanical strength (0.37 MPa) and Young’s modulus (3.36 MPa) evinced BC scaffold utilization for skin tissue. The results indicate that BC sheets can be utilized in biomedical application and nanotechnology approaches.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"40 1","pages":"371 - 378"},"PeriodicalIF":0.0,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73777723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of recombinant β-NGF expression in Escherichia coli using response surface methodology","authors":"Pouria Gholami Tilko, Z. Hajihassan, H. Moghimi","doi":"10.1080/10826068.2016.1252927","DOIUrl":"https://doi.org/10.1080/10826068.2016.1252927","url":null,"abstract":"ABSTRACT Human nerve growth factor a member of the neurotrophin family can be used to treat neurodegenerative diseases. As it has disulfide bonds in its structure, periplasmic expression of it using appropriate signal sequence is beneficial. Therefore, in this work β-nerve growth factor (β-NGF) was expressed in Escherichia coli using pET39b expression vector containing DsbA signal sequence. In an initial step, the effect of isopropyl β-D-1-thiogalactopyranoside (IPTG) and lactose concentration as inducer on protein production was investigated using response surface methodology. Then the effect of different postinduction time and temperature on protein production was studied. Our results indicated that the highest β-NGF production was achieved with 1 mM IPTG and low concentrations of lactose (0–2% w/v), low cultivation temperature of 25°C and postinduction time of 2 hr. Also following β-NGF purification, bioassay test using PC12 cell line was done. The biological activity of the purified β-NGF showed a similar cell proliferation activity with the standard recombinant human β-NGF. In conclusion, the results indicated an optimized upstream process to obtain high yields of biologically active β-NGF.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"27 1","pages":"406 - 413"},"PeriodicalIF":0.0,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79153863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing granulocyte colony-stimulating factor expression in Pichia pastoris through fusion with human serum albumin","authors":"Moolchand Sigar, N. Maity, S. Mishra","doi":"10.1080/10826068.2016.1252922","DOIUrl":"https://doi.org/10.1080/10826068.2016.1252922","url":null,"abstract":"ABSTRACT Protein fusion technology has emerged as one of the important strategies to increase the level of expression and half-life of therapeutic proteins in heterologous expression systems. Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor and is clinically used against neutropenia. Enhanced expression and stability of G-CSF were achieved in Pichia pastoris by the way of constructing a fusion protein with human serum albumin (HSA). The strategy involved polymerase chain reaction (PCR) amplification of fragments corresponding to codon-optimized G-CSF and domain 3 of HSA. Overlapping PCR was used to obtain the full-length fused gene (1,184 bp) with a 15-bp linker sequence comprising of 4 Gly and 1 Ser residues. Extracellular expression was carried out downstream of α-factor secretion signal sequence under the control of alcohol oxidase 1 promoter using pPICZαB. Excreted protein in the range of 110–380 mg L−1 was observed among the transformants. Effect of aeration and temperature was investigated in one of the transformants (35) overexpressing fusion protein and levels of G-CSF enhanced by 1.8-fold and 2.3-fold, respectively. Assay of biological activity indicated the fusion protein to retain similar cell proliferation activity as the commercial G-CSF preparation.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"35 1","pages":"364 - 370"},"PeriodicalIF":0.0,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78393524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single temperature liquefaction process at different operating pHs to improve ethanol production from Indian rice and corn feedstock","authors":"V. Gohel, K. Ranganathan, G. Duan","doi":"10.1080/10826068.2016.1244687","DOIUrl":"https://doi.org/10.1080/10826068.2016.1244687","url":null,"abstract":"ABSTRACT Conventional grain ethanol manufacturing is a high-temperature energy-intensive process comprising of multiple-unit operations when combined with lower ethanol recovery results in higher production cost. In liquefaction, jet cooking accounts for significant energy cost, while strong acid or base used for pH adjustment presents a safety hazard. A need is felt for sustainable ethanol manufacturing process that is less hazardous, consumes lower energy, and operates in a low pH range of 4.50–5.50. A single temperature liquefaction (STL) process that could efficiently operate at lower liquefaction temperature over a pH range of 4.50–5.50 was developed using rice and corn feedstock. Ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 481.2 ± 1.5, 492.4 ± 1.5, and 493.6 ± 1.5 L MT−1 rice, respectively. Similarly, ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 404.6 ± 1.3, 413.9 ± 0.8, and 412.4 ± 1.8 L MT−1 corn, respectively. The improvement in ethanol recovery is attributed to higher starch conversion by alpha-amylase even at pH as low as 4.50. Thus, the STL process operated at pH lower than 5.20 is poised to enhance sustainability by offering dual advantage of energy as well as chemical saving.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"159 1","pages":"342 - 348"},"PeriodicalIF":0.0,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75114762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}