Sepideh Khazeni, A. Hatamian-Zarmi, F. Yazdian, Z. Mokhtari-Hosseini, B. Ebrahimi-Hosseinzadeh, Behnam Noorani, Ghassem Amoabedini, M. Soudi
{"title":"微型生物反应器生产纳米纤维素:优化与表征","authors":"Sepideh Khazeni, A. Hatamian-Zarmi, F. Yazdian, Z. Mokhtari-Hosseini, B. Ebrahimi-Hosseinzadeh, Behnam Noorani, Ghassem Amoabedini, M. Soudi","doi":"10.1080/10826068.2016.1252923","DOIUrl":null,"url":null,"abstract":"ABSTRACT Bacterial cellulose (BC) is a very fascinating microbial biopolymer which is mainly produced by Gluconacetobacter xylinum. Optimization of BC production by G. xylinum was performed based on scale-down studies in miniature-bioreactor and response surface methodology in which the optimum pH value (6.5) and shaking rate (50 rpm) were obtained. The static culture condition for BC production has newly been defined. Nanostructure of BC includes nanofibers up to (60 nm) and nanoporosity up to (265 nm) was observed by scanning electron microscopy. By Fourier transform infrared spectroscopy study, the most expected BC interaction is nucleophilic interaction. MTT assay showed high biocompatibility. Appropriate mechanical strength (0.37 MPa) and Young’s modulus (3.36 MPa) evinced BC scaffold utilization for skin tissue. The results indicate that BC sheets can be utilized in biomedical application and nanotechnology approaches.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Production of nanocellulose in miniature-bioreactor: Optimization and characterization\",\"authors\":\"Sepideh Khazeni, A. Hatamian-Zarmi, F. Yazdian, Z. Mokhtari-Hosseini, B. Ebrahimi-Hosseinzadeh, Behnam Noorani, Ghassem Amoabedini, M. Soudi\",\"doi\":\"10.1080/10826068.2016.1252923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Bacterial cellulose (BC) is a very fascinating microbial biopolymer which is mainly produced by Gluconacetobacter xylinum. Optimization of BC production by G. xylinum was performed based on scale-down studies in miniature-bioreactor and response surface methodology in which the optimum pH value (6.5) and shaking rate (50 rpm) were obtained. The static culture condition for BC production has newly been defined. Nanostructure of BC includes nanofibers up to (60 nm) and nanoporosity up to (265 nm) was observed by scanning electron microscopy. By Fourier transform infrared spectroscopy study, the most expected BC interaction is nucleophilic interaction. MTT assay showed high biocompatibility. Appropriate mechanical strength (0.37 MPa) and Young’s modulus (3.36 MPa) evinced BC scaffold utilization for skin tissue. The results indicate that BC sheets can be utilized in biomedical application and nanotechnology approaches.\",\"PeriodicalId\":20393,\"journal\":{\"name\":\"Preparative Biochemistry and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2016.1252923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10826068.2016.1252923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Production of nanocellulose in miniature-bioreactor: Optimization and characterization
ABSTRACT Bacterial cellulose (BC) is a very fascinating microbial biopolymer which is mainly produced by Gluconacetobacter xylinum. Optimization of BC production by G. xylinum was performed based on scale-down studies in miniature-bioreactor and response surface methodology in which the optimum pH value (6.5) and shaking rate (50 rpm) were obtained. The static culture condition for BC production has newly been defined. Nanostructure of BC includes nanofibers up to (60 nm) and nanoporosity up to (265 nm) was observed by scanning electron microscopy. By Fourier transform infrared spectroscopy study, the most expected BC interaction is nucleophilic interaction. MTT assay showed high biocompatibility. Appropriate mechanical strength (0.37 MPa) and Young’s modulus (3.36 MPa) evinced BC scaffold utilization for skin tissue. The results indicate that BC sheets can be utilized in biomedical application and nanotechnology approaches.