具有抗菌膜性能的Cupriavidus sp. usmama13聚(3-羟基丁酸酯-co-4-羟基丁酸酯)共聚物和抗菌黄色色素的增强生产

I. Ismail, Tana Poorani Gurusamy, H. Ramachandran, Abdullah Al-Ashraf Amirul
{"title":"具有抗菌膜性能的Cupriavidus sp. usmama13聚(3-羟基丁酸酯-co-4-羟基丁酸酯)共聚物和抗菌黄色色素的增强生产","authors":"I. Ismail, Tana Poorani Gurusamy, H. Ramachandran, Abdullah Al-Ashraf Amirul","doi":"10.1080/10826068.2016.1252925","DOIUrl":null,"url":null,"abstract":"ABSTRACT Antibiofilm polymers have the ability to inhibit bacterial biofilm formation, which is known to occur ubiquitously in the environment and pose risks of infection. In this study, production of P(3HB-co-4HB) copolymer and antimicrobial yellow pigment from Cupriavidus sp. USMAHM13 are enhanced through medium optimization. Before the improvement of yellow pigment production, screening for the best additional supplement was performed resulting in high-yield yellow pigmentation using yeast extract with optimum concentration of 2 g/L. Effects of different concentrations of 1,4-butanediol, ammonium acetate, and yeast extract were studied using central composite design. Under optimal conditions, 53 wt% of polyhydroxyalkanoate (PHA) content, 0.35 g/L of pigment concentration, and 5.87 g/L of residual biomass were achieved at 0.56 wt% C of 1,4-butanediol, 1.14 g/L of ammonium acetate, and 2 g/L of yeast extract. Antibiofilm tests revealed that the yellow pigment coated on P(3HB-co-4HB) copolymer had significant effect on the inhibition of bacteria proliferation and colonization from 6 hr onward reaching 100% inhibition by 12 hr, hence effectively inhibiting the biofilm formation.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer and antimicrobial yellow pigmentation from Cupriavidus sp. USMAHM13 with antibiofilm capability\",\"authors\":\"I. Ismail, Tana Poorani Gurusamy, H. Ramachandran, Abdullah Al-Ashraf Amirul\",\"doi\":\"10.1080/10826068.2016.1252925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Antibiofilm polymers have the ability to inhibit bacterial biofilm formation, which is known to occur ubiquitously in the environment and pose risks of infection. In this study, production of P(3HB-co-4HB) copolymer and antimicrobial yellow pigment from Cupriavidus sp. USMAHM13 are enhanced through medium optimization. Before the improvement of yellow pigment production, screening for the best additional supplement was performed resulting in high-yield yellow pigmentation using yeast extract with optimum concentration of 2 g/L. Effects of different concentrations of 1,4-butanediol, ammonium acetate, and yeast extract were studied using central composite design. Under optimal conditions, 53 wt% of polyhydroxyalkanoate (PHA) content, 0.35 g/L of pigment concentration, and 5.87 g/L of residual biomass were achieved at 0.56 wt% C of 1,4-butanediol, 1.14 g/L of ammonium acetate, and 2 g/L of yeast extract. Antibiofilm tests revealed that the yellow pigment coated on P(3HB-co-4HB) copolymer had significant effect on the inhibition of bacteria proliferation and colonization from 6 hr onward reaching 100% inhibition by 12 hr, hence effectively inhibiting the biofilm formation.\",\"PeriodicalId\":20393,\"journal\":{\"name\":\"Preparative Biochemistry and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2016.1252925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10826068.2016.1252925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

抗生物膜聚合物具有抑制细菌生物膜形成的能力,而细菌生物膜的形成在环境中普遍存在,并具有感染的风险。在本研究中,通过培养基优化,提高了Cupriavidus sp. usmah13中P(3HB-co-4HB)共聚物和抗菌黄色素的产量。在提高黄色素产量之前,对最佳添加物进行筛选,以最佳浓度为2 g/L的酵母提取物获得高产黄色素。采用中心复合设计,研究了不同浓度的1,4-丁二醇、乙酸铵和酵母提取物的影响。在最佳条件下,1,4-丁二醇浓度为0.56 wt%,乙酸铵浓度为1.14 g/L,酵母浸膏浓度为2 g/L时,聚羟基烷酸酯(PHA)含量为53 wt%,色素浓度为0.35 g/L,剩余生物量为5.87 g/L。抗菌膜实验表明,包被在P(3HB-co-4HB)共聚物上的黄色色素从6小时开始对细菌的增殖和定植有明显的抑制作用,12小时达到100%的抑制作用,从而有效地抑制了生物膜的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer and antimicrobial yellow pigmentation from Cupriavidus sp. USMAHM13 with antibiofilm capability
ABSTRACT Antibiofilm polymers have the ability to inhibit bacterial biofilm formation, which is known to occur ubiquitously in the environment and pose risks of infection. In this study, production of P(3HB-co-4HB) copolymer and antimicrobial yellow pigment from Cupriavidus sp. USMAHM13 are enhanced through medium optimization. Before the improvement of yellow pigment production, screening for the best additional supplement was performed resulting in high-yield yellow pigmentation using yeast extract with optimum concentration of 2 g/L. Effects of different concentrations of 1,4-butanediol, ammonium acetate, and yeast extract were studied using central composite design. Under optimal conditions, 53 wt% of polyhydroxyalkanoate (PHA) content, 0.35 g/L of pigment concentration, and 5.87 g/L of residual biomass were achieved at 0.56 wt% C of 1,4-butanediol, 1.14 g/L of ammonium acetate, and 2 g/L of yeast extract. Antibiofilm tests revealed that the yellow pigment coated on P(3HB-co-4HB) copolymer had significant effect on the inhibition of bacteria proliferation and colonization from 6 hr onward reaching 100% inhibition by 12 hr, hence effectively inhibiting the biofilm formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信