Hanen Mallek-Fakhfakh, J. Fakhfakh, N. Masmoudi, Fatma Rezgui, A. Gargouri, H. Belghith
{"title":"农业废弃物作为嗜热Talaromyces生产β-葡萄糖苷酶的底物:这些酶在促进废纸糖化中的作用","authors":"Hanen Mallek-Fakhfakh, J. Fakhfakh, N. Masmoudi, Fatma Rezgui, A. Gargouri, H. Belghith","doi":"10.1080/10826068.2016.1252928","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the present study, we investigated a potent extracellular β-glucosidases secreted by the thermophilic fungal strain AX4 of Talaromyces thermophilus, isolated from Tunisian soil samples. This strain was selected referring to the highest thermostability of its β-glucosidases compared to the other fungal isolates. The β-glucosidase production was investigated by submerged fermentation. The optimal temperature and initial pH for maximum β-glucosidase production were 50°C and 7.0, respectively. Several carbon sources were assayed for their effects on β-glucosidase production, significant yields were obtained in media containing lactose 1% (3.0 ± 0.36 U/ml) and wheat bran 2% (4.0 ± 0.4 U/ml). The combination of wheat bran at 2% and lactose at 0.8% as carbon source enhanced β-glucosidase production, which reached 8.5 ± 0.28 U/ml. Furthermore, the β-glucosidase-rich enzymatic juice of T. thermophilus exhibited significant synergism with Trichoderma reesei (Rut C30) cellulases for pretreated waste paper (PWP) hydrolysis. Interestingly, the use of this optimal enzymatic cocktail increased 4.23 fold the glucose yield after saccharification of waste paper. A maximum sugar yield (94%) was reached when using low substrate (2%) and enzyme loading (EC1).","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Agricultural wastes as substrates for β-glucosidase production by Talaromyces thermophilus: Role of these enzymes in enhancing waste paper saccharification\",\"authors\":\"Hanen Mallek-Fakhfakh, J. Fakhfakh, N. Masmoudi, Fatma Rezgui, A. Gargouri, H. Belghith\",\"doi\":\"10.1080/10826068.2016.1252928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the present study, we investigated a potent extracellular β-glucosidases secreted by the thermophilic fungal strain AX4 of Talaromyces thermophilus, isolated from Tunisian soil samples. This strain was selected referring to the highest thermostability of its β-glucosidases compared to the other fungal isolates. The β-glucosidase production was investigated by submerged fermentation. The optimal temperature and initial pH for maximum β-glucosidase production were 50°C and 7.0, respectively. Several carbon sources were assayed for their effects on β-glucosidase production, significant yields were obtained in media containing lactose 1% (3.0 ± 0.36 U/ml) and wheat bran 2% (4.0 ± 0.4 U/ml). The combination of wheat bran at 2% and lactose at 0.8% as carbon source enhanced β-glucosidase production, which reached 8.5 ± 0.28 U/ml. Furthermore, the β-glucosidase-rich enzymatic juice of T. thermophilus exhibited significant synergism with Trichoderma reesei (Rut C30) cellulases for pretreated waste paper (PWP) hydrolysis. Interestingly, the use of this optimal enzymatic cocktail increased 4.23 fold the glucose yield after saccharification of waste paper. A maximum sugar yield (94%) was reached when using low substrate (2%) and enzyme loading (EC1).\",\"PeriodicalId\":20393,\"journal\":{\"name\":\"Preparative Biochemistry and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2016.1252928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10826068.2016.1252928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Agricultural wastes as substrates for β-glucosidase production by Talaromyces thermophilus: Role of these enzymes in enhancing waste paper saccharification
ABSTRACT In the present study, we investigated a potent extracellular β-glucosidases secreted by the thermophilic fungal strain AX4 of Talaromyces thermophilus, isolated from Tunisian soil samples. This strain was selected referring to the highest thermostability of its β-glucosidases compared to the other fungal isolates. The β-glucosidase production was investigated by submerged fermentation. The optimal temperature and initial pH for maximum β-glucosidase production were 50°C and 7.0, respectively. Several carbon sources were assayed for their effects on β-glucosidase production, significant yields were obtained in media containing lactose 1% (3.0 ± 0.36 U/ml) and wheat bran 2% (4.0 ± 0.4 U/ml). The combination of wheat bran at 2% and lactose at 0.8% as carbon source enhanced β-glucosidase production, which reached 8.5 ± 0.28 U/ml. Furthermore, the β-glucosidase-rich enzymatic juice of T. thermophilus exhibited significant synergism with Trichoderma reesei (Rut C30) cellulases for pretreated waste paper (PWP) hydrolysis. Interestingly, the use of this optimal enzymatic cocktail increased 4.23 fold the glucose yield after saccharification of waste paper. A maximum sugar yield (94%) was reached when using low substrate (2%) and enzyme loading (EC1).