Plant Phenomics最新文献

筛选
英文 中文
Phenotyping of Panicle Number and Shape in Rice Breeding Materials Based on Unmanned Aerial Vehicle Imagery. 基于无人飞行器图像的水稻育种材料圆锥花序数量和形状表型分析
IF 7.6 1区 农林科学
Plant Phenomics Pub Date : 2024-10-24 eCollection Date: 2024-01-01 DOI: 10.34133/plantphenomics.0265
Xuqi Lu, Yutao Shen, Jiayang Xie, Xin Yang, Qingyao Shu, Song Chen, Zhihui Shen, Haiyan Cen
{"title":"Phenotyping of Panicle Number and Shape in Rice Breeding Materials Based on Unmanned Aerial Vehicle Imagery.","authors":"Xuqi Lu, Yutao Shen, Jiayang Xie, Xin Yang, Qingyao Shu, Song Chen, Zhihui Shen, Haiyan Cen","doi":"10.34133/plantphenomics.0265","DOIUrl":"https://doi.org/10.34133/plantphenomics.0265","url":null,"abstract":"<p><p>The number of panicles per unit area (PNpA) is one of the key factors contributing to the grain yield of rice crops. Accurate PNpA quantification is vital for breeding high-yield rice cultivars. Previous studies were based on proximal sensing with fixed observation platforms or unmanned aerial vehicles (UAVs). The near-canopy images produced in these studies suffer from inefficiency and complex image processing pipelines that require manual image cropping and annotation. This study aims to develop an automated, high-throughput UAV imagery-based approach for field plot segmentation and panicle number quantification, along with a novel classification method for different panicle types, enhancing PNpA quantification at the plot level. RGB images of the rice canopy were efficiently captured at an altitude of 15 m, followed by image stitching and plot boundary recognition via a mask region-based convolutional neural network (Mask R-CNN). The images were then segmented into plot-scale subgraphs, which were categorized into 3 growth stages. The panicle vision transformer (Panicle-ViT), which integrates a multipath vision transformer and replaces the Mask R-CNN backbone, accurately detects panicles. Additionally, the Res2Net50 architecture classified panicle types with 4 angles of 0°, 15°, 45°, and 90°. The results confirm that the performance of Plot-Seg is comparable to that of manual segmentation. Panicle-ViT outperforms the traditional Mask R-CNN across all the datasets, with the average precision at 50% intersection over union (AP<sub>50</sub>) improved by 3.5% to 20.5%. The PNpA quantification for the full dataset achieved superior performance, with a coefficient of determination (<i>R</i> <sup>2</sup>) of 0.73 and a root mean square error (RMSE) of 28.3, and the overall panicle classification accuracy reached 94.8%. The proposed approach enhances operational efficiency and automates the process from plot cropping to PNpA prediction, which is promising for accelerating the selection of desired traits in rice breeding.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Influence of Row Orientation and Crown Morphology on Growth of Pinus taeda L. with Drone-Based Airborne Laser Scanning. 利用无人机机载激光扫描技术评估行向和树冠形态对尾叶松生长的影响
IF 7.6 1区 农林科学
Plant Phenomics Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI: 10.34133/plantphenomics.0264
Matthew J Sumnall, David R Carter, Timothy J Albaugh, Rachel L Cook, Otávio C Campoe, Rafael A Rubilar
{"title":"Evaluating the Influence of Row Orientation and Crown Morphology on Growth of <i>Pinus taeda L</i>. with Drone-Based Airborne Laser Scanning.","authors":"Matthew J Sumnall, David R Carter, Timothy J Albaugh, Rachel L Cook, Otávio C Campoe, Rafael A Rubilar","doi":"10.34133/plantphenomics.0264","DOIUrl":"https://doi.org/10.34133/plantphenomics.0264","url":null,"abstract":"<p><p>The tree crown's directionality of growth may be an indicator of how aggressive the tree is in terms of foraging for light. Airborne drone laser scanning (DLS) has been used to accurately classify individual tree crowns (ITCs) and derive size metrics related to the crown. We compare ITCs among 6 genotypes exhibiting different crown architectures in managed loblolly pine (<i>Pinus taeda L.</i>) in the United States. DLS data are classified into ITC objects, and we present novel methods to calculate ITC shape metrics. Tree stems are located using (a) model-based clustering and (b) weighting cluster-based size. We generated ITC shape metrics using 3-dimensional (3D) alphashapes in 2 DLS acquisitions of the same location, 4 years apart. Crown horizontal distance from the stem was estimated at multiple heights, in addition to calculating 3D volume in specific azimuths. Crown morphologies varied significantly (<i>P</i> < 0.05) spatially, temporally, and among the 6 genotypes. Most genotypes exhibited larger crown volumes facing south (150° to 173°). We found that crown asymmetries were consistent with (a) the direction of solar radiation, (b) the spatial arrangement and proximity of the neighboring crowns, and (c) genotype. Larger crowns were consistent with larger increases in stem volume, but that increases in the southern portions of crown volume were consistent with larger stem volume increases, than in the north. This finding suggests that row orientation could influence stem growth rates in plantations, particularly impacting earlier development. These differences can potentially reduce over time, especially if stands are not thinned in a timely manner once canopy growing space has diminished.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cucumber Seedling Segmentation Network Based on a Multiview Geometric Graph Encoder from 3D Point Clouds. 基于三维点云多视角几何图编码器的黄瓜幼苗分割网络。
IF 7.6 1区 农林科学
Plant Phenomics Pub Date : 2024-10-16 eCollection Date: 2024-01-01 DOI: 10.34133/plantphenomics.0254
Yonglong Zhang, Yaling Xie, Jialuo Zhou, Xiangying Xu, Minmin Miao
{"title":"Cucumber Seedling Segmentation Network Based on a Multiview Geometric Graph Encoder from 3D Point Clouds.","authors":"Yonglong Zhang, Yaling Xie, Jialuo Zhou, Xiangying Xu, Minmin Miao","doi":"10.34133/plantphenomics.0254","DOIUrl":"https://doi.org/10.34133/plantphenomics.0254","url":null,"abstract":"<p><p>Plant phenotyping plays a pivotal role in observing and comprehending the growth and development of plants. In phenotyping, plant organ segmentation based on 3D point clouds has garnered increasing attention in recent years. However, using only the geometric relationship features of Euclidean space still cannot accurately segment and measure plants. To this end, we mine more geometric features and propose a segmentation network based on a multiview geometric graph encoder, called SN-MGGE. First, we construct a point cloud acquisition platform to obtain the cucumber seedling point cloud dataset, and employ CloudCompare software to annotate the point cloud data. The GGE module is then designed to generate the point features, including the geometric relationships and geometric shape structure, via a graph encoder over the Euclidean and hyperbolic spaces. Finally, the semantic segmentation results are obtained via a downsampling operation and multilayer perceptron. Extensive experiments on a cucumber seedling dataset clearly show that our proposed SN-MGGE network outperforms several mainstream segmentation networks (e.g., PointNet++, AGConv, and PointMLP), achieving mIoU and OA values of 94.90% and 97.43%, respectively. On the basis of the segmentation results, 4 phenotypic parameters (i.e., plant height, leaf length, leaf width, and leaf area) are extracted through the K-means clustering method; these parameters are very close to the ground truth, and the <i>R</i> <sup>2</sup> values reach 0.98, 0.96, 0.97, and 0.97, respectively. Furthermore, an ablation study and a generalization experiment also show that the SN-MGGE network is robust and extensive.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GSP-AI: An AI-Powered Platform for Identifying Key Growth Stages and the Vegetative-to-Reproductive Transition in Wheat Using Trilateral Drone Imagery and Meteorological Data. GSP-AI:利用三边无人机图像和气象数据识别小麦关键生长阶段和无性到生殖过渡的人工智能平台。
IF 7.6 1区 农林科学
Plant Phenomics Pub Date : 2024-10-09 eCollection Date: 2024-01-01 DOI: 10.34133/plantphenomics.0255
Liyan Shen, Guohui Ding, Robert Jackson, Mujahid Ali, Shuchen Liu, Arthur Mitchell, Yeyin Shi, Xuqi Lu, Jie Dai, Greg Deakin, Katherine Frels, Haiyan Cen, Yu-Feng Ge, Ji Zhou
{"title":"GSP-AI: An AI-Powered Platform for Identifying Key Growth Stages and the Vegetative-to-Reproductive Transition in Wheat Using Trilateral Drone Imagery and Meteorological Data.","authors":"Liyan Shen, Guohui Ding, Robert Jackson, Mujahid Ali, Shuchen Liu, Arthur Mitchell, Yeyin Shi, Xuqi Lu, Jie Dai, Greg Deakin, Katherine Frels, Haiyan Cen, Yu-Feng Ge, Ji Zhou","doi":"10.34133/plantphenomics.0255","DOIUrl":"10.34133/plantphenomics.0255","url":null,"abstract":"<p><p>Wheat (<i>Triticum aestivum</i>) is one of the most important staple crops worldwide. To ensure its global supply, the timing and duration of its growth cycle needs to be closely monitored in the field so that necessary crop management activities can be arranged in a timely manner. Also, breeders and plant researchers need to evaluate growth stages (GSs) for tens of thousands of genotypes at the plot level, at different sites and across multiple seasons. These indicate the importance of providing a reliable and scalable toolkit to address the challenge so that the plot-level assessment of GS can be successfully conducted for different objectives in plant research. Here, we present a multimodal deep learning model called GSP-AI, capable of identifying key GSs and predicting the vegetative-to-reproductive transition (i.e., flowering days) in wheat based on drone-collected canopy images and multiseasonal climatic datasets. In the study, we first established an open Wheat Growth Stage Prediction (WGSP) dataset, consisting of 70,410 annotated images collected from 54 varieties cultivated in China, 109 in the United Kingdom, and 100 in the United States together with key climatic factors. Then, we built an effective learning architecture based on Res2Net and long short-term memory (LSTM) to learn canopy-level vision features and patterns of climatic changes between 2018 and 2021 growing seasons. Utilizing the model, we achieved an overall accuracy of 91.2% in identifying key GS and an average root mean square error (RMSE) of 5.6 d for forecasting the flowering days compared with manual scoring. We further tested and improved the GSP-AI model with high-resolution smartphone images collected in the 2021/2022 season in China, through which the accuracy of the model was enhanced to 93.4% for GS and RMSE reduced to 4.7 d for the flowering prediction. As a result, we believe that our work demonstrates a valuable advance to inform breeders and growers regarding the timing and duration of key plant growth and development phases at the plot level, facilitating them to conduct more effective crop selection and make agronomic decisions under complicated field conditions for wheat improvement.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MLG-YOLO: A Model for Real-Time Accurate Detection and Localization of Winter Jujube in Complex Structured Orchard Environments. MLG-YOLO:在结构复杂的果园环境中实时准确检测和定位冬枣的模型。
IF 7.6 1区 农林科学
Plant Phenomics Pub Date : 2024-09-23 eCollection Date: 2024-01-01 DOI: 10.34133/plantphenomics.0258
Chenhao Yu, Xiaoyi Shi, Wenkai Luo, Junzhe Feng, Zhouzhou Zheng, Ayanori Yorozu, Yaohua Hu, Jiapan Guo
{"title":"MLG-YOLO: A Model for Real-Time Accurate Detection and Localization of Winter Jujube in Complex Structured Orchard Environments.","authors":"Chenhao Yu, Xiaoyi Shi, Wenkai Luo, Junzhe Feng, Zhouzhou Zheng, Ayanori Yorozu, Yaohua Hu, Jiapan Guo","doi":"10.34133/plantphenomics.0258","DOIUrl":"10.34133/plantphenomics.0258","url":null,"abstract":"<p><p>Our research focuses on winter jujube trees and is conducted in a greenhouse environment in a structured orchard to effectively control various growth conditions. The development of a robotic system for winter jujube harvesting is crucial for achieving mechanized harvesting. Harvesting winter jujubes efficiently requires accurate detection and location. To address this issue, we proposed a winter jujube detection and localization method based on the MobileVit-Large selective kernel-GSConv-YOLO (MLG-YOLO) model. First, a winter jujube dataset is constructed to comprise various scenarios of lighting conditions and leaf obstructions to train the model. Subsequently, the MLG-YOLO model based on YOLOv8n is proposed, with improvements including the incorporation of MobileViT to reconstruct the backbone and keep the model more lightweight. The neck is enhanced with LSKblock to capture broader contextual information, and the lightweight convolutional technology GSConv is introduced to further improve the detection accuracy. Finally, a 3-dimensional localization method combining MLG-YOLO with RGB-D cameras is proposed. Through ablation studies, comparative experiments, 3-dimensional localization error tests, and full-scale tree detection tests in laboratory environments and structured orchard environments, the effectiveness of the MLG-YOLO model in detecting and locating winter jujubes is confirmed. With MLG-YOLO, the mAP increases by 3.50%, while the number of parameters is reduced by 61.03% in comparison with the baseline YOLOv8n model. Compared with mainstream object detection models, MLG-YOLO excels in both detection accuracy and model size, with a mAP of 92.70%, a precision of 86.80%, a recall of 84.50%, and a model size of only 2.52 MB. The average detection accuracy in the laboratory environmental testing of winter jujube reached 100%, and the structured orchard environmental accuracy reached 92.82%. The absolute positioning errors in the <i>X</i>, <i>Y</i>, and <i>Z</i> directions are 4.20, 4.70, and 3.90 mm, respectively. This method enables accurate detection and localization of winter jujubes, providing technical support for winter jujube harvesting robots.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fruit Water Stress Index of Apple Measured by Means of Temperature-Annotated 3D Point Cloud. 利用温度注释三维点云测量苹果果实水分胁迫指数
IF 6.5 1区 农林科学
Plant Phenomics Pub Date : 2024-09-18 DOI: 10.34133/plantphenomics.0252
Nikos Tsoulias,Arash Khosravi,Werner B Herppich,Manuela Zude-Sasse
{"title":"Fruit Water Stress Index of Apple Measured by Means of Temperature-Annotated 3D Point Cloud.","authors":"Nikos Tsoulias,Arash Khosravi,Werner B Herppich,Manuela Zude-Sasse","doi":"10.34133/plantphenomics.0252","DOIUrl":"https://doi.org/10.34133/plantphenomics.0252","url":null,"abstract":"In applied ecophysiological studies related to global warming and water scarcity, the water status of fruit is of increasing importance in the context of fresh food production. In the present work, a fruit water stress index (FWSI) is introduced for close analysis of the relationship between fruit and air temperatures. A sensor system consisting of light detection and ranging (LiDAR) sensor and thermal camera was employed to remotely analyze apple trees (Malus x domestica Borkh. \"Gala\") by means of 3D point clouds. After geometric calibration of the sensor system, the temperature values were assigned in the corresponding 3D point cloud to reconstruct a thermal point cloud of the entire canopy. The annotated points belonging to the fruit were segmented, providing annotated fruit point clouds. Such estimated 3D distribution of fruit surface temperature (T Est) was highly correlated to manually recorded reference temperature (r 2 = 0.93). As methodological innovation, based on T Est, the fruit water stress index (FWSI Est) was introduced, potentially providing more detailed information on the fruit compared to the crop water stress index of whole canopy obtained from established 2D thermal imaging. FWSI Est showed low error when compared to manual reference data. Considering in total 302 apples, FWSI Est increased during the season. Additional diel measurements on 50 apples, each at 6 measurements per day (in total 600 apples), were performed in the commercial harvest window. FWSI Est calculated with air temperature plus 5 °C appeared as diel hysteresis. Such diurnal changes of FWSI Est and those throughout fruit development provide a new ecophysiological tool aimed at 3D spatiotemporal fruit analysis and particularly more efficient, capturing more samples, insight in the specific requests of crop management.","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Auto-LIA: The Automated Vision-Based Leaf Inclination Angle Measurement System Improves Monitoring of Plant Physiology. Auto-LIA:基于视觉的叶倾角自动测量系统改善了植物生理监测。
IF 6.5 1区 农林科学
Plant Phenomics Pub Date : 2024-09-11 DOI: 10.34133/plantphenomics.0245
Sijun Jiang,Xingcai Wu,Qi Wang,Zhixun Pei,Yuxiang Wang,Jian Jin,Ying Guo,RunJiang Song,Liansheng Zang,Yong-Jin Liu,Gefei Hao
{"title":"Auto-LIA: The Automated Vision-Based Leaf Inclination Angle Measurement System Improves Monitoring of Plant Physiology.","authors":"Sijun Jiang,Xingcai Wu,Qi Wang,Zhixun Pei,Yuxiang Wang,Jian Jin,Ying Guo,RunJiang Song,Liansheng Zang,Yong-Jin Liu,Gefei Hao","doi":"10.34133/plantphenomics.0245","DOIUrl":"https://doi.org/10.34133/plantphenomics.0245","url":null,"abstract":"Plant sensors are commonly used in agricultural production, landscaping, and other fields to monitor plant growth and environmental parameters. As an important basic parameter in plant monitoring, leaf inclination angle (LIA) not only influences light absorption and pesticide loss but also contributes to genetic analysis and other plant phenotypic data collection. The measurements of LIA provide a basis for crop research as well as agricultural management, such as water loss, pesticide absorption, and illumination radiation. On the one hand, existing efficient solutions, represented by light detection and ranging (LiDAR), can provide the average leaf angle distribution of a plot. On the other hand, the labor-intensive schemes represented by hand measurements can show high accuracy. However, the existing methods suffer from low automation and weak leaf-plant correlation, limiting the application of individual plant leaf phenotypes. To improve the efficiency of LIA measurement and provide the correlation between leaf and plant, we design an image-phenotype-based noninvasive and efficient optical sensor measurement system, which combines multi-processes implemented via computer vision technologies and RGB images collected by physical sensing devices. Specifically, we utilize object detection to associate leaves with plants and adopt 3-dimensional reconstruction techniques to recover the spatial information of leaves in computational space. Then, we propose a spatial continuity-based segmentation algorithm combined with a graphical operation to implement the extraction of leaf key points. Finally, we seek the connection between the computational space and the actual physical space and put forward a method of leaf transformation to realize the localization and recovery of the LIA in physical space. Overall, our solution is characterized by noninvasiveness, full-process automation, and strong leaf-plant correlation, which enables efficient measurements at low cost. In this study, we validate Auto-LIA for practicality and compare the accuracy with the best solution that is acquired with an expensive and invasive LiDAR device. Our solution demonstrates its competitiveness and usability at a much lower equipment cost, with an accuracy of only 2. 5° less than that of the widely used LiDAR. As an intelligent processing system for plant sensor signals, Auto-LIA provides fully automated measurement of LIA, improving the monitoring of plant physiological information for plant protection. We make our code and data publicly available at http://autolia.samlab.cn.","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AFM-YOLOv8s: An Accurate, Fast, and Highly Robust Model for Detection of Sporangia of Plasmopara viticola with Various Morphological Variants. AFM-YOLOv8s:用于检测具有各种形态变异的葡萄孢子囊的准确、快速和高度稳健的模型。
IF 6.5 1区 农林科学
Plant Phenomics Pub Date : 2024-09-11 DOI: 10.34133/plantphenomics.0246
Changqing Yan,Zeyun Liang,Ling Yin,Shumei Wei,Qi Tian,Ying Li,Han Cheng,Jindong Liu,Qiang Yu,Gang Zhao,Junjie Qu
{"title":"AFM-YOLOv8s: An Accurate, Fast, and Highly Robust Model for Detection of Sporangia of Plasmopara viticola with Various Morphological Variants.","authors":"Changqing Yan,Zeyun Liang,Ling Yin,Shumei Wei,Qi Tian,Ying Li,Han Cheng,Jindong Liu,Qiang Yu,Gang Zhao,Junjie Qu","doi":"10.34133/plantphenomics.0246","DOIUrl":"https://doi.org/10.34133/plantphenomics.0246","url":null,"abstract":"Monitoring spores is crucial for predicting and preventing fungal- or oomycete-induced diseases like grapevine downy mildew. However, manual spore or sporangium detection using microscopes is time-consuming and labor-intensive, often resulting in low accuracy and slow processing speed. Emerging deep learning models like YOLOv8 aim to rapidly detect objects accurately but struggle with efficiency and accuracy when identifying various sporangia formations amidst complex backgrounds. To address these challenges, we developed an enhanced YOLOv8s, namely, AFM-YOLOv8s, by introducing an Adaptive Cross Fusion module, a lightweight feature extraction module FasterCSP (Faster Cross-Stage Partial Module), and a novel loss function MPDIoU (Minimum Point Distance Intersection over Union). AFM-YOLOv8s replaces the C2f module with FasterCSP, a more efficient feature extraction module, to reduce model parameter size and overall depth. In addition, we developed and integrated an Adaptive Cross Fusion Feature Pyramid Network to enhance the fusion of multiscale features within the YOLOv8 architecture. Last, we utilized the MPDIoU loss function to improve AFM-YOLOv8s' ability to locate bounding boxes and learn object spatial localization. Experimental results demonstrated AFM-YOLOv8s' effectiveness, achieving 91.3% accuracy (mean average precision at 50% IoU) on our custom grapevine downy mildew sporangium dataset-a notable improvement of 2.7% over the original YOLOv8 algorithm. FasterCSP reduced model complexity and size, enhanced deployment versatility, and improved real-time detection, chosen over C2f for easier integration despite minor accuracy trade-off. Currently, the AFM-YOLOv8s model is running as a backend algorithm in an open web application, providing valuable technical support for downy mildew prevention and control efforts and fungicide resistance studies.","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenotyping Alfalfa (Medicago sativa L.) Root Structure Architecture via Integrating Confident Machine Learning with ResNet-18. 通过将可信机器学习与 ResNet-18 相结合,对紫花苜蓿(Medicago sativa L.)根结构进行表型。
IF 6.5 1区 农林科学
Plant Phenomics Pub Date : 2024-09-11 DOI: 10.34133/plantphenomics.0251
Brandon J Weihs,Zhou Tang,Zezhong Tian,Deborah Jo Heuschele,Aftab Siddique,Thomas H Terrill,Zhou Zhang,Larry M York,Zhiwu Zhang,Zhanyou Xu
{"title":"Phenotyping Alfalfa (Medicago sativa L.) Root Structure Architecture via Integrating Confident Machine Learning with ResNet-18.","authors":"Brandon J Weihs,Zhou Tang,Zezhong Tian,Deborah Jo Heuschele,Aftab Siddique,Thomas H Terrill,Zhou Zhang,Larry M York,Zhiwu Zhang,Zhanyou Xu","doi":"10.34133/plantphenomics.0251","DOIUrl":"https://doi.org/10.34133/plantphenomics.0251","url":null,"abstract":"Background: Root system architecture (RSA) is of growing interest in implementing plant improvements with belowground root traits. Modern computing technology applied to images offers new pathways forward to plant trait improvements and selection through RSA analysis (using images to discern/classify root types and traits). However, a major stumbling block to image-based RSA phenotyping is image label noise, which reduces the accuracies of models that take images as direct inputs. To address the label noise problem, this study utilized an artificial intelligence model capable of classifying the RSA of alfalfa (Medicago sativa L.) directly from images and coupled it with downstream label improvement methods. Images were compared with different model outputs with manual root classifications, and confident machine learning (CL) and reactive machine learning (RL) methods were tested to minimize the effects of subjective labeling to improve labeling and prediction accuracies. Results: The CL algorithm modestly improved the Random Forest model's overall prediction accuracy of the Minnesota dataset (1%) while larger gains in accuracy were observed with the ResNet-18 model results. The ResNet-18 cross-population prediction accuracy was improved (~8% to 13%) with CL compared to the original/preprocessed datasets. Training and testing data combinations with the highest accuracies (86%) resulted from the CL- and/or RL-corrected datasets for predicting taproot RSAs. Similarly, the highest accuracies achieved for the intermediate RSA class resulted from corrected data combinations. The highest overall accuracy (~75%) using the ResNet-18 model involved CL on a pooled dataset containing images from both sample locations. Conclusions: ResNet-18 DNN prediction accuracies of alfalfa RSA image labels are increased when CL and RL are employed. By increasing the dataset to reduce overfitting while concurrently finding and correcting image label errors, it is demonstrated here that accuracy increases by as much as ~11% to 13% can be achieved with semi-automated, computer-assisted preprocessing and data cleaning (CL/RL).","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Throughput Phenotyping of Soybean Biomass: Conventional Trait Estimation and Novel Latent Feature Extraction Using UAV Remote Sensing and Deep Learning Models. 大豆生物量的高通量表型:利用无人机遥感和深度学习模型进行传统性状估计和新颖的潜在特征提取。
IF 7.6 1区 农林科学
Plant Phenomics Pub Date : 2024-09-09 eCollection Date: 2024-01-01 DOI: 10.34133/plantphenomics.0244
Mashiro Okada, Clément Barras, Yusuke Toda, Kosuke Hamazaki, Yoshihiro Ohmori, Yuji Yamasaki, Hirokazu Takahashi, Hideki Takanashi, Mai Tsuda, Masami Yokota Hirai, Hisashi Tsujimoto, Akito Kaga, Mikio Nakazono, Toru Fujiwara, Hiroyoshi Iwata
{"title":"High-Throughput Phenotyping of Soybean Biomass: Conventional Trait Estimation and Novel Latent Feature Extraction Using UAV Remote Sensing and Deep Learning Models.","authors":"Mashiro Okada, Clément Barras, Yusuke Toda, Kosuke Hamazaki, Yoshihiro Ohmori, Yuji Yamasaki, Hirokazu Takahashi, Hideki Takanashi, Mai Tsuda, Masami Yokota Hirai, Hisashi Tsujimoto, Akito Kaga, Mikio Nakazono, Toru Fujiwara, Hiroyoshi Iwata","doi":"10.34133/plantphenomics.0244","DOIUrl":"https://doi.org/10.34133/plantphenomics.0244","url":null,"abstract":"<p><p>High-throughput phenotyping serves as a framework to reduce chronological costs and accelerate breeding cycles. In this study, we developed models to estimate the phenotypes of biomass-related traits in soybean (<i>Glycine max</i>) using unmanned aerial vehicle (UAV) remote sensing and deep learning models. In 2018, a field experiment was conducted using 198 soybean germplasm accessions with known whole-genome sequences under 2 irrigation conditions: drought and control. We used a convolutional neural network (CNN) as a model to estimate the phenotypic values of 5 conventional biomass-related traits: dry weight, main stem length, numbers of nodes and branches, and plant height. We utilized manually measured phenotypes of conventional traits along with RGB images and digital surface models from UAV remote sensing to train our CNN models. The accuracy of the developed models was assessed through 10-fold cross-validation, which demonstrated their ability to accurately estimate the phenotypes of all conventional traits simultaneously. Deep learning enabled us to extract features that exhibited strong correlations with the output (i.e., phenotypes of the target traits) and accurately estimate the values of the features from the input data. We considered the extracted low-dimensional features as phenotypes in the latent space and attempted to annotate them based on the phenotypes of conventional traits. Furthermore, we validated whether these low-dimensional latent features were genetically controlled by assessing the accuracy of genomic predictions. The results revealed the potential utility of these low-dimensional latent features in actual breeding scenarios.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信