{"title":"从一个到所有:基于少镜头学习的谷物作物头数计数统一模型。","authors":"Qiang Wang, Xijian Fan, Ziqing Zhuang, Tardi Tjahjadi, Shichao Jin, Honghua Huan, Qiaolin Ye","doi":"10.34133/plantphenomics.0271","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate counting of cereals crops, e.g., maize, rice, sorghum, and wheat, is crucial for estimating grain production and ensuring food security. However, existing methods for counting cereal crops focus predominantly on building models for specific crop head; thus, they lack generalizability to different crop varieties. This paper presents Counting Heads of Cereal Crops Net (CHCNet), which is a unified model designed for counting multiple cereal crop heads by few-shot learning, which effectively reduces labeling costs. Specifically, a refined vision encoder is developed to enhance feature embedding, where a foundation model, namely, the segment anything model (SAM), is employed to emphasize the marked crop heads while mitigating complex background effects. Furthermore, a multiscale feature interaction module is proposed for integrating a similarity metric to facilitate automatic learning of crop-specific features across varying scales, which enhances the ability to describe crop heads of various sizes and shapes. The CHCNet model adopts a 2-stage training procedure. The initial stage focuses on latent feature mining to capture common feature representations of cereal crops. In the subsequent stage, inference is performed without additional training, by extracting domain-specific features of the target crop from selected exemplars to accomplish the counting task. In extensive experiments on 6 diverse crop datasets captured from ground cameras and drones, CHCNet substantially outperformed state-of-the-art counting methods in terms of cross-crop generalization ability, achieving mean absolute errors (MAEs) of 9.96 and 9.38 for maize, 13.94 for sorghum, 7.94 for rice, and 15.62 for mixed crops. A user-friendly interactive demo is available at http://cerealcropnet.com/, where researchers are invited to personally evaluate the proposed CHCNet. The source code for implementing CHCNet is available at https://github.com/Small-flyguy/CHCNet.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0271"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639208/pdf/","citationCount":"0","resultStr":"{\"title\":\"One to All: Toward a Unified Model for Counting Cereal Crop Heads Based on Few-Shot Learning.\",\"authors\":\"Qiang Wang, Xijian Fan, Ziqing Zhuang, Tardi Tjahjadi, Shichao Jin, Honghua Huan, Qiaolin Ye\",\"doi\":\"10.34133/plantphenomics.0271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate counting of cereals crops, e.g., maize, rice, sorghum, and wheat, is crucial for estimating grain production and ensuring food security. However, existing methods for counting cereal crops focus predominantly on building models for specific crop head; thus, they lack generalizability to different crop varieties. This paper presents Counting Heads of Cereal Crops Net (CHCNet), which is a unified model designed for counting multiple cereal crop heads by few-shot learning, which effectively reduces labeling costs. Specifically, a refined vision encoder is developed to enhance feature embedding, where a foundation model, namely, the segment anything model (SAM), is employed to emphasize the marked crop heads while mitigating complex background effects. Furthermore, a multiscale feature interaction module is proposed for integrating a similarity metric to facilitate automatic learning of crop-specific features across varying scales, which enhances the ability to describe crop heads of various sizes and shapes. The CHCNet model adopts a 2-stage training procedure. The initial stage focuses on latent feature mining to capture common feature representations of cereal crops. In the subsequent stage, inference is performed without additional training, by extracting domain-specific features of the target crop from selected exemplars to accomplish the counting task. In extensive experiments on 6 diverse crop datasets captured from ground cameras and drones, CHCNet substantially outperformed state-of-the-art counting methods in terms of cross-crop generalization ability, achieving mean absolute errors (MAEs) of 9.96 and 9.38 for maize, 13.94 for sorghum, 7.94 for rice, and 15.62 for mixed crops. A user-friendly interactive demo is available at http://cerealcropnet.com/, where researchers are invited to personally evaluate the proposed CHCNet. The source code for implementing CHCNet is available at https://github.com/Small-flyguy/CHCNet.</p>\",\"PeriodicalId\":20318,\"journal\":{\"name\":\"Plant Phenomics\",\"volume\":\"6 \",\"pages\":\"0271\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639208/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Phenomics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.34133/plantphenomics.0271\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0271","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
One to All: Toward a Unified Model for Counting Cereal Crop Heads Based on Few-Shot Learning.
Accurate counting of cereals crops, e.g., maize, rice, sorghum, and wheat, is crucial for estimating grain production and ensuring food security. However, existing methods for counting cereal crops focus predominantly on building models for specific crop head; thus, they lack generalizability to different crop varieties. This paper presents Counting Heads of Cereal Crops Net (CHCNet), which is a unified model designed for counting multiple cereal crop heads by few-shot learning, which effectively reduces labeling costs. Specifically, a refined vision encoder is developed to enhance feature embedding, where a foundation model, namely, the segment anything model (SAM), is employed to emphasize the marked crop heads while mitigating complex background effects. Furthermore, a multiscale feature interaction module is proposed for integrating a similarity metric to facilitate automatic learning of crop-specific features across varying scales, which enhances the ability to describe crop heads of various sizes and shapes. The CHCNet model adopts a 2-stage training procedure. The initial stage focuses on latent feature mining to capture common feature representations of cereal crops. In the subsequent stage, inference is performed without additional training, by extracting domain-specific features of the target crop from selected exemplars to accomplish the counting task. In extensive experiments on 6 diverse crop datasets captured from ground cameras and drones, CHCNet substantially outperformed state-of-the-art counting methods in terms of cross-crop generalization ability, achieving mean absolute errors (MAEs) of 9.96 and 9.38 for maize, 13.94 for sorghum, 7.94 for rice, and 15.62 for mixed crops. A user-friendly interactive demo is available at http://cerealcropnet.com/, where researchers are invited to personally evaluate the proposed CHCNet. The source code for implementing CHCNet is available at https://github.com/Small-flyguy/CHCNet.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.