从一个到所有:基于少镜头学习的谷物作物头数计数统一模型。

IF 7.6 1区 农林科学 Q1 AGRONOMY
Plant Phenomics Pub Date : 2024-11-28 eCollection Date: 2024-01-01 DOI:10.34133/plantphenomics.0271
Qiang Wang, Xijian Fan, Ziqing Zhuang, Tardi Tjahjadi, Shichao Jin, Honghua Huan, Qiaolin Ye
{"title":"从一个到所有:基于少镜头学习的谷物作物头数计数统一模型。","authors":"Qiang Wang, Xijian Fan, Ziqing Zhuang, Tardi Tjahjadi, Shichao Jin, Honghua Huan, Qiaolin Ye","doi":"10.34133/plantphenomics.0271","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate counting of cereals crops, e.g., maize, rice, sorghum, and wheat, is crucial for estimating grain production and ensuring food security. However, existing methods for counting cereal crops focus predominantly on building models for specific crop head; thus, they lack generalizability to different crop varieties. This paper presents Counting Heads of Cereal Crops Net (CHCNet), which is a unified model designed for counting multiple cereal crop heads by few-shot learning, which effectively reduces labeling costs. Specifically, a refined vision encoder is developed to enhance feature embedding, where a foundation model, namely, the segment anything model (SAM), is employed to emphasize the marked crop heads while mitigating complex background effects. Furthermore, a multiscale feature interaction module is proposed for integrating a similarity metric to facilitate automatic learning of crop-specific features across varying scales, which enhances the ability to describe crop heads of various sizes and shapes. The CHCNet model adopts a 2-stage training procedure. The initial stage focuses on latent feature mining to capture common feature representations of cereal crops. In the subsequent stage, inference is performed without additional training, by extracting domain-specific features of the target crop from selected exemplars to accomplish the counting task. In extensive experiments on 6 diverse crop datasets captured from ground cameras and drones, CHCNet substantially outperformed state-of-the-art counting methods in terms of cross-crop generalization ability, achieving mean absolute errors (MAEs) of 9.96 and 9.38 for maize, 13.94 for sorghum, 7.94 for rice, and 15.62 for mixed crops. A user-friendly interactive demo is available at http://cerealcropnet.com/, where researchers are invited to personally evaluate the proposed CHCNet. The source code for implementing CHCNet is available at https://github.com/Small-flyguy/CHCNet.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0271"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639208/pdf/","citationCount":"0","resultStr":"{\"title\":\"One to All: Toward a Unified Model for Counting Cereal Crop Heads Based on Few-Shot Learning.\",\"authors\":\"Qiang Wang, Xijian Fan, Ziqing Zhuang, Tardi Tjahjadi, Shichao Jin, Honghua Huan, Qiaolin Ye\",\"doi\":\"10.34133/plantphenomics.0271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate counting of cereals crops, e.g., maize, rice, sorghum, and wheat, is crucial for estimating grain production and ensuring food security. However, existing methods for counting cereal crops focus predominantly on building models for specific crop head; thus, they lack generalizability to different crop varieties. This paper presents Counting Heads of Cereal Crops Net (CHCNet), which is a unified model designed for counting multiple cereal crop heads by few-shot learning, which effectively reduces labeling costs. Specifically, a refined vision encoder is developed to enhance feature embedding, where a foundation model, namely, the segment anything model (SAM), is employed to emphasize the marked crop heads while mitigating complex background effects. Furthermore, a multiscale feature interaction module is proposed for integrating a similarity metric to facilitate automatic learning of crop-specific features across varying scales, which enhances the ability to describe crop heads of various sizes and shapes. The CHCNet model adopts a 2-stage training procedure. The initial stage focuses on latent feature mining to capture common feature representations of cereal crops. In the subsequent stage, inference is performed without additional training, by extracting domain-specific features of the target crop from selected exemplars to accomplish the counting task. In extensive experiments on 6 diverse crop datasets captured from ground cameras and drones, CHCNet substantially outperformed state-of-the-art counting methods in terms of cross-crop generalization ability, achieving mean absolute errors (MAEs) of 9.96 and 9.38 for maize, 13.94 for sorghum, 7.94 for rice, and 15.62 for mixed crops. A user-friendly interactive demo is available at http://cerealcropnet.com/, where researchers are invited to personally evaluate the proposed CHCNet. The source code for implementing CHCNet is available at https://github.com/Small-flyguy/CHCNet.</p>\",\"PeriodicalId\":20318,\"journal\":{\"name\":\"Plant Phenomics\",\"volume\":\"6 \",\"pages\":\"0271\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639208/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Phenomics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.34133/plantphenomics.0271\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0271","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

玉米、水稻、高粱和小麦等谷物作物的准确计数对于估计粮食产量和确保粮食安全至关重要。然而,现有的谷物作物计数方法主要集中在为特定的作物头建立模型;因此,它们缺乏对不同作物品种的通用性。CHCNet是一种采用少射学习的方法对多个谷类作物进行计数的统一模型,有效地降低了标注成本。具体而言,开发了一种改进的视觉编码器来增强特征嵌入,其中使用基础模型即分割任意模型(SAM)来强调标记的作物头,同时减轻复杂的背景影响。在此基础上,提出了一种多尺度特征交互模块,用于整合相似性度量,实现不同尺度作物特征的自动学习,增强了对不同尺寸和形状的作物头的描述能力。CHCNet模型采用两阶段训练程序。初始阶段侧重于潜在特征挖掘,以捕获谷类作物的共同特征表示。在随后的阶段,通过从选定的样本中提取目标作物的特定领域特征来完成计数任务,无需额外的训练即可执行推理。在地面摄像机和无人机采集的6种不同作物数据集上进行的大量实验中,CHCNet在跨作物泛化能力方面大大优于最先进的统计方法,玉米的平均绝对误差(MAEs)为9.96和9.38,高粱为13.94,水稻为7.94,混合作物为15.62。一个用户友好的交互式演示可以在http://cerealcropnet.com/上获得,研究人员被邀请亲自评估拟议的CHCNet。实现CHCNet的源代码可在https://github.com/Small-flyguy/CHCNet获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One to All: Toward a Unified Model for Counting Cereal Crop Heads Based on Few-Shot Learning.

Accurate counting of cereals crops, e.g., maize, rice, sorghum, and wheat, is crucial for estimating grain production and ensuring food security. However, existing methods for counting cereal crops focus predominantly on building models for specific crop head; thus, they lack generalizability to different crop varieties. This paper presents Counting Heads of Cereal Crops Net (CHCNet), which is a unified model designed for counting multiple cereal crop heads by few-shot learning, which effectively reduces labeling costs. Specifically, a refined vision encoder is developed to enhance feature embedding, where a foundation model, namely, the segment anything model (SAM), is employed to emphasize the marked crop heads while mitigating complex background effects. Furthermore, a multiscale feature interaction module is proposed for integrating a similarity metric to facilitate automatic learning of crop-specific features across varying scales, which enhances the ability to describe crop heads of various sizes and shapes. The CHCNet model adopts a 2-stage training procedure. The initial stage focuses on latent feature mining to capture common feature representations of cereal crops. In the subsequent stage, inference is performed without additional training, by extracting domain-specific features of the target crop from selected exemplars to accomplish the counting task. In extensive experiments on 6 diverse crop datasets captured from ground cameras and drones, CHCNet substantially outperformed state-of-the-art counting methods in terms of cross-crop generalization ability, achieving mean absolute errors (MAEs) of 9.96 and 9.38 for maize, 13.94 for sorghum, 7.94 for rice, and 15.62 for mixed crops. A user-friendly interactive demo is available at http://cerealcropnet.com/, where researchers are invited to personally evaluate the proposed CHCNet. The source code for implementing CHCNet is available at https://github.com/Small-flyguy/CHCNet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Phenomics
Plant Phenomics Multiple-
CiteScore
8.60
自引率
9.20%
发文量
26
审稿时长
14 weeks
期刊介绍: Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals. The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics. The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信