Plant PhenomicsPub Date : 2024-09-11DOI: 10.34133/plantphenomics.0251
Brandon J Weihs,Zhou Tang,Zezhong Tian,Deborah Jo Heuschele,Aftab Siddique,Thomas H Terrill,Zhou Zhang,Larry M York,Zhiwu Zhang,Zhanyou Xu
{"title":"Phenotyping Alfalfa (Medicago sativa L.) Root Structure Architecture via Integrating Confident Machine Learning with ResNet-18.","authors":"Brandon J Weihs,Zhou Tang,Zezhong Tian,Deborah Jo Heuschele,Aftab Siddique,Thomas H Terrill,Zhou Zhang,Larry M York,Zhiwu Zhang,Zhanyou Xu","doi":"10.34133/plantphenomics.0251","DOIUrl":"https://doi.org/10.34133/plantphenomics.0251","url":null,"abstract":"Background: Root system architecture (RSA) is of growing interest in implementing plant improvements with belowground root traits. Modern computing technology applied to images offers new pathways forward to plant trait improvements and selection through RSA analysis (using images to discern/classify root types and traits). However, a major stumbling block to image-based RSA phenotyping is image label noise, which reduces the accuracies of models that take images as direct inputs. To address the label noise problem, this study utilized an artificial intelligence model capable of classifying the RSA of alfalfa (Medicago sativa L.) directly from images and coupled it with downstream label improvement methods. Images were compared with different model outputs with manual root classifications, and confident machine learning (CL) and reactive machine learning (RL) methods were tested to minimize the effects of subjective labeling to improve labeling and prediction accuracies. Results: The CL algorithm modestly improved the Random Forest model's overall prediction accuracy of the Minnesota dataset (1%) while larger gains in accuracy were observed with the ResNet-18 model results. The ResNet-18 cross-population prediction accuracy was improved (~8% to 13%) with CL compared to the original/preprocessed datasets. Training and testing data combinations with the highest accuracies (86%) resulted from the CL- and/or RL-corrected datasets for predicting taproot RSAs. Similarly, the highest accuracies achieved for the intermediate RSA class resulted from corrected data combinations. The highest overall accuracy (~75%) using the ResNet-18 model involved CL on a pooled dataset containing images from both sample locations. Conclusions: ResNet-18 DNN prediction accuracies of alfalfa RSA image labels are increased when CL and RL are employed. By increasing the dataset to reduce overfitting while concurrently finding and correcting image label errors, it is demonstrated here that accuracy increases by as much as ~11% to 13% can be achieved with semi-automated, computer-assisted preprocessing and data cleaning (CL/RL).","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"57 1","pages":"0251"},"PeriodicalIF":6.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Throughput Phenotyping of Soybean Biomass: Conventional Trait Estimation and Novel Latent Feature Extraction Using UAV Remote Sensing and Deep Learning Models.","authors":"Mashiro Okada, Clément Barras, Yusuke Toda, Kosuke Hamazaki, Yoshihiro Ohmori, Yuji Yamasaki, Hirokazu Takahashi, Hideki Takanashi, Mai Tsuda, Masami Yokota Hirai, Hisashi Tsujimoto, Akito Kaga, Mikio Nakazono, Toru Fujiwara, Hiroyoshi Iwata","doi":"10.34133/plantphenomics.0244","DOIUrl":"https://doi.org/10.34133/plantphenomics.0244","url":null,"abstract":"<p><p>High-throughput phenotyping serves as a framework to reduce chronological costs and accelerate breeding cycles. In this study, we developed models to estimate the phenotypes of biomass-related traits in soybean (<i>Glycine max</i>) using unmanned aerial vehicle (UAV) remote sensing and deep learning models. In 2018, a field experiment was conducted using 198 soybean germplasm accessions with known whole-genome sequences under 2 irrigation conditions: drought and control. We used a convolutional neural network (CNN) as a model to estimate the phenotypic values of 5 conventional biomass-related traits: dry weight, main stem length, numbers of nodes and branches, and plant height. We utilized manually measured phenotypes of conventional traits along with RGB images and digital surface models from UAV remote sensing to train our CNN models. The accuracy of the developed models was assessed through 10-fold cross-validation, which demonstrated their ability to accurately estimate the phenotypes of all conventional traits simultaneously. Deep learning enabled us to extract features that exhibited strong correlations with the output (i.e., phenotypes of the target traits) and accurately estimate the values of the features from the input data. We considered the extracted low-dimensional features as phenotypes in the latent space and attempted to annotate them based on the phenotypes of conventional traits. Furthermore, we validated whether these low-dimensional latent features were genetically controlled by assessing the accuracy of genomic predictions. The results revealed the potential utility of these low-dimensional latent features in actual breeding scenarios.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0244"},"PeriodicalIF":7.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the Optimal Leaf Area-to-Fruit Ratio of Pear Trees on the Basis of Bearing Branch Girdling and Machine Learning.","authors":"Fanhang Zhang, Qi Wang, Haitao Li, Qinyang Zhou, Zhihao Tan, Xiaochao Zu, Xin Yan, Shaoling Zhang, Seishi Ninomiya, Yue Mu, Shutian Tao","doi":"10.34133/plantphenomics.0233","DOIUrl":"10.34133/plantphenomics.0233","url":null,"abstract":"<p><p>The leaf area-to-fruit ratio (LAFR) is an important factor affecting fruit quality. Previous studies on LAFR have provided some recommendations for optimal values. However, these recommendations have been quite broad and lack effectiveness during the fruit thinning period. In this study, data on the LAFR and fruit quality of pears at 5 stages were collected by continuously girdling bearing branches throughout the entire fruit development process. Five different clustering algorithms, including KMeans, Agglomerative clustering, Spectral clustering, Birch, and Spectral biclustering, were employed to classify the fruit quality data. Agglomerative clustering yielded the best results when the dataset was divided into 4 clusters. The least squares method was utilized to fit the LAFR corresponding to the best quality cluster, and the optimal LAFR values for 28, 42, 63, 91, and 112 days after flowering were 12.54, 18.95, 23.79, 27.06, and 28.76 dm<sup>2</sup> (the corresponding leaf-to-fruit ratio values were 19, 29, 36, 41, and 44, respectively). Furthermore, field verification experiments demonstrated that the optimal LAFR contributed to improving pear fruit quality, and a relatively high LAFR beyond the optimum value did not further increase quality. In summary, we optimized the LAFR of pear trees at different stages and confirmed the effectiveness of the optimal LAFR in improving fruit quality. Our research provides a theoretical basis for managing pear tree fruit load and achieving high-quality, clean fruit production.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0233"},"PeriodicalIF":7.6,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322523/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhenomicsPub Date : 2024-08-05eCollection Date: 2024-01-01DOI: 10.34133/plantphenomics.0214
Severin Einspanier, Christopher Tominello-Ramirez, Mario Hasler, Adelin Barbacci, Sylvain Raffaele, Remco Stam
{"title":"High-Resolution Disease Phenotyping Reveals Distinct Resistance Mechanisms of Tomato Crop Wild Relatives against <i>Sclerotinia sclerotiorum</i>.","authors":"Severin Einspanier, Christopher Tominello-Ramirez, Mario Hasler, Adelin Barbacci, Sylvain Raffaele, Remco Stam","doi":"10.34133/plantphenomics.0214","DOIUrl":"10.34133/plantphenomics.0214","url":null,"abstract":"<p><p>Besides the well-understood qualitative disease resistance, plants possess a more complex quantitative form of resistance: quantitative disease resistance (QDR). QDR is commonly defined as a partial but more durable form of resistance and, therefore, might display a valuable target for resistance breeding. The characterization of QDR phenotypes, especially of wild crop relatives, displays a bottleneck in deciphering QDR's genomic and regulatory background. Moreover, the relationship between QDR parameters, such as infection frequency, lag-phase duration, and lesion growth rate, remains elusive. High hurdles for applying modern phenotyping technology, such as the low availability of phenotyping facilities or complex data analysis, further dampen progress in understanding QDR. Here, we applied a low-cost (<1.000 €) phenotyping system to measure lesion growth dynamics of wild tomato species (e.g., <i>Solanum pennellii</i> or <i>Solanum pimpinellifolium</i>). We provide insight into QDR diversity of wild populations and derive specific QDR mechanisms and their cross-talk<i>.</i> We show how temporally continuous observations are required to dissect end-point severity into functional resistance mechanisms. The results of our study show how QDR can be maintained by facilitating different defense mechanisms during host-parasite interaction and that the capacity of the QDR toolbox highly depends on the host's genetic context. We anticipate that the present findings display a valuable resource for more targeted functional characterization of the processes involved in QDR. Moreover, we show how modest phenotyping technology can be leveraged to help answer highly relevant biological questions.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0214"},"PeriodicalIF":7.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298253/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local and Global Feature-Aware Dual-Branch Networks for Plant Disease Recognition.","authors":"Jianwu Lin, Xin Zhang, Yongbin Qin, Shengxian Yang, Xingtian Wen, Tomislav Cernava, Quirico Migheli, Xiaoyulong Chen","doi":"10.34133/plantphenomics.0208","DOIUrl":"10.34133/plantphenomics.0208","url":null,"abstract":"<p><p>Accurate identification of plant diseases is important for ensuring the safety of agricultural production. Convolutional neural networks (CNNs) and visual transformers (VTs) can extract effective representations of images and have been widely used for the intelligent recognition of plant disease images. However, CNNs have excellent local perception with poor global perception, and VTs have excellent global perception with poor local perception. This makes it difficult to further improve the performance of both CNNs and VTs on plant disease recognition tasks. In this paper, we propose a local and global feature-aware dual-branch network, named LGNet, for the identification of plant diseases. More specifically, we first design a dual-branch structure based on CNNs and VTs to extract the local and global features. Then, an adaptive feature fusion (AFF) module is designed to fuse the local and global features, thus driving the model to dynamically perceive the weights of different features. Finally, we design a hierarchical mixed-scale unit-guided feature fusion (HMUFF) module to mine the key information in the features at different levels and fuse the differentiated information among them, thereby enhancing the model's multiscale perception capability. Subsequently, extensive experiments were conducted on the AI Challenger 2018 dataset and the self-collected corn disease (SCD) dataset. The experimental results demonstrate that our proposed LGNet achieves state-of-the-art recognition performance on both the AI Challenger 2018 dataset and the SCD dataset, with accuracies of 88.74% and 99.08%, respectively.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0208"},"PeriodicalIF":7.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhenomicsPub Date : 2024-07-29eCollection Date: 2024-01-01DOI: 10.34133/plantphenomics.0205
Lei Zhou, Huichun Zhang, Liming Bian, Ye Tian, Haopeng Zhou
{"title":"Phenotyping of Drought-Stressed Poplar Saplings Using Exemplar-Based Data Generation and Leaf-Level Structural Analysis.","authors":"Lei Zhou, Huichun Zhang, Liming Bian, Ye Tian, Haopeng Zhou","doi":"10.34133/plantphenomics.0205","DOIUrl":"10.34133/plantphenomics.0205","url":null,"abstract":"<p><p>Drought stress is one of the main threats to poplar plant growth and has a negative impact on plant yield. Currently, high-throughput plant phenotyping has been widely studied as a rapid and nondestructive tool for analyzing the growth status of plants, such as water and nutrient content. In this study, a combination of computer vision and deep learning was used for drought-stressed poplar sapling phenotyping. Four varieties of poplar saplings were cultivated, and 5 different irrigation treatments were applied. Color images of the plant samples were captured for analysis. Two tasks, including leaf posture calculation and drought stress identification, were conducted. First, instance segmentation was used to extract the regions of the leaf, petiole, and midvein. A dataset augmentation method was created for reducing manual annotation costs. The horizontal angles of the fitted lines of the petiole and midvein were calculated for leaf posture digitization. Second, multitask learning models were proposed for simultaneously determining the stress level and poplar variety. The mean absolute errors of the angle calculations were 10.7° and 8.2° for the petiole and midvein, respectively. Drought stress increased the horizontal angle of leaves. Moreover, using raw images as the input, the multitask MobileNet achieved the highest accuracy (99% for variety identification and 76% for stress level classification), outperforming widely used single-task deep learning models (stress level classification accuracies of <70% on the prediction dataset). The plant phenotyping methods presented in this study could be further used for drought-stress-resistant poplar plant screening and precise irrigation decision-making.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0205"},"PeriodicalIF":7.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhenomicsPub Date : 2024-07-24eCollection Date: 2024-01-01DOI: 10.34133/plantphenomics.0215
Lennard Roscher-Ehrig, Sven E Weber, Amine Abbadi, Milka Malenica, Stefan Abel, Reinhard Hemker, Rod J Snowdon, Benjamin Wittkop, Andreas Stahl
{"title":"Phenomic Selection for Hybrid Rapeseed Breeding.","authors":"Lennard Roscher-Ehrig, Sven E Weber, Amine Abbadi, Milka Malenica, Stefan Abel, Reinhard Hemker, Rod J Snowdon, Benjamin Wittkop, Andreas Stahl","doi":"10.34133/plantphenomics.0215","DOIUrl":"https://doi.org/10.34133/plantphenomics.0215","url":null,"abstract":"<p><p>Phenomic selection is a recent approach suggested as a low-cost, high-throughput alternative to genomic selection. Instead of using genetic markers, it employs spectral data to predict complex traits using equivalent statistical models. Phenomic selection has been shown to outperform genomic selection when using spectral data that was obtained within the same generation as the traits that were predicted. However, for hybrid breeding, the key question is whether spectral data from parental genotypes can be used to effectively predict traits in the hybrid generation. Here, we aimed to evaluate the potential of phenomic selection for hybrid rapeseed breeding. We performed predictions for various traits in a structured population of 410 test hybrids, grown in multiple environments, using near-infrared spectroscopy data obtained from harvested seeds of both the hybrids and their parental lines with different linear and nonlinear models. We found that phenomic selection within the hybrid generation outperformed genomic selection for seed yield and plant height, even when spectral data was collected at single locations, while being less affected by population structure. Furthermore, we demonstrate that phenomic prediction across generations is feasible, and selecting hybrids based on spectral data obtained from parental genotypes is competitive with genomic selection. We conclude that phenomic selection is a promising approach for rapeseed breeding that can be easily implemented without any additional costs or efforts as near-infrared spectroscopy is routinely assessed in rapeseed breeding.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0215"},"PeriodicalIF":7.6,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization and Identification of NPK Stress in Rice Using Terrestrial Hyperspectral Images.","authors":"Jinfeng Wang, Yuhang Chu, Guoqing Chen, Minyi Zhao, Jizhuang Wu, Ritao Qu, Zhentao Wang","doi":"10.34133/plantphenomics.0197","DOIUrl":"https://doi.org/10.34133/plantphenomics.0197","url":null,"abstract":"<p><p>Due to nutrient stress, which is an important constraint to the development of the global agricultural sector, it is now vital to timely evaluate plant health. Remote sensing technology, especially hyperspectral imaging technology, has evolved from spectral response modes to pattern recognition and vegetation monitoring. This study established a hyperspectral library of 14 NPK (nitrogen, phosphorus, potassium) nutrient stress conditions in rice. The terrestrial hyperspectral camera (SPECIM-IQ) collected 420 rice stress images and extracted as well as analyzed representative spectral reflectance curves under 14 stress modes. The canopy spectral profile characteristics, vegetation index, and principal component analysis demonstrated the differences in rice under different nutrient stresses. A transformer-based deep learning network SHCFTT (SuperPCA-HybridSN-CBAM-Feature tokenization transformer) was established for identifying nutrient stress patterns from hyperspectral images while being compared with classic support vector machines, 1D-CNN (1D-Convolutional Neural Network), and 3D-CNN. The total accuracy of the SHCFTT model under different modeling strategies and different years ranged from 93.92% to 100%, indicating the positive effect of the proposed method on improving the accuracy of identifying nutrient stress in rice.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0197"},"PeriodicalIF":7.6,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhenomicsPub Date : 2024-07-17eCollection Date: 2024-01-01DOI: 10.34133/plantphenomics.0203
Alireza Nakhforoosh, Emil Hallin, Chithra Karunakaran, Malgorzata Korbas, Jarvis Stobbs, Leon Kochian
{"title":"Visualization and Quantitative Evaluation of Functional Structures of Soybean Root Nodules via Synchrotron X-ray Imaging.","authors":"Alireza Nakhforoosh, Emil Hallin, Chithra Karunakaran, Malgorzata Korbas, Jarvis Stobbs, Leon Kochian","doi":"10.34133/plantphenomics.0203","DOIUrl":"10.34133/plantphenomics.0203","url":null,"abstract":"<p><p>The efficiency of N<sub>2</sub>-fixation in legume-rhizobia symbiosis is a function of root nodule activity. Nodules consist of 2 functionally important tissues: (a) a central infected zone (CIZ), colonized by rhizobia bacteria, which serves as the site of N<sub>2</sub>-fixation, and (b) vascular bundles (VBs), serving as conduits for the transport of water, nutrients, and fixed nitrogen compounds between the nodules and plant. A quantitative evaluation of these tissues is essential to unravel their functional importance in N<sub>2</sub>-fixation. Employing synchrotron-based x-ray microcomputed tomography (SR-μCT) at submicron resolutions, we obtained high-quality tomograms of fresh soybean root nodules in a non-invasive manner. A semi-automated segmentation algorithm was employed to generate 3-dimensional (3D) models of the internal root nodule structure of the CIZ and VBs, and their volumes were quantified based on the reconstructed 3D structures. Furthermore, synchrotron x-ray fluorescence imaging revealed a distinctive localization of Fe within CIZ tissue and Zn within VBs, allowing for their visualization in 2 dimensions. This study represents a pioneer application of the SR-μCT technique for volumetric quantification of CIZ and VB tissues in fresh, intact soybean root nodules. The proposed methods enable the exploitation of root nodule's anatomical features as novel traits in breeding, aiming to enhance N<sub>2</sub>-fixation through improved root nodule activity.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0203"},"PeriodicalIF":7.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254386/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant PhenomicsPub Date : 2024-07-08eCollection Date: 2024-01-01DOI: 10.34133/plantphenomics.0200
Hengbiao Zheng, Weijie Tang, Tao Yang, Meng Zhou, Caili Guo, Tao Cheng, Weixing Cao, Yan Zhu, Yunhui Zhang, Xia Yao
{"title":"Grain Protein Content Phenotyping in Rice via Hyperspectral Imaging Technology and a Genome-Wide Association Study.","authors":"Hengbiao Zheng, Weijie Tang, Tao Yang, Meng Zhou, Caili Guo, Tao Cheng, Weixing Cao, Yan Zhu, Yunhui Zhang, Xia Yao","doi":"10.34133/plantphenomics.0200","DOIUrl":"10.34133/plantphenomics.0200","url":null,"abstract":"<p><p>Efficient and accurate acquisition of the rice grain protein content (GPC) is important for selecting high-quality rice varieties, and remote sensing technology is an attractive potential method for this task. However, the majority of multispectral sensors are poor predictors of GPC due to their broad spectral bands. Hyperspectral technology provides a new analytical technology for bridging the gap between phenomics and genomics. However, the small size of typical datasets is a constraint for model construction for estimating GPC, limiting their accuracy and reducing their ability to generalize to a wide range of varieties. In this study, we used hyperspectral data of rice grains from 515 japonica varieties and deep convolution generative adversarial networks (DCGANs) to generate simulated data to improve the model accuracy. Features sensitive to GPC were extracted after applying a continuous wavelet transform (CWT), and the estimated GPC model was constructed by partial least squares regression (PLSR). Finally, a genome-wide association study (GWAS) was applied to the measured and generated datasets to detect GPC loci. The results demonstrated that the simulated GPC values generated after 8,000 epochs were closest to the measured values. The wavelet feature (WF<sub>1743, 2</sub>), obtained from the data with the addition of 200 simulated samples, exhibited the highest GPC estimation accuracy (<i>R</i> <sup>2</sup> = 0.58 and RRMSE = 6.70%). The GWAS analysis showed that the estimated values based on the simulated data detected the same loci as the measured values, including the <i>OsmtSSB1L</i> gene related to grain storage protein. This study provides a new technique for the efficient genetic study of phenotypic traits in rice based on hyperspectral technology.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0200"},"PeriodicalIF":7.6,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}