{"title":"MLG-YOLO:在结构复杂的果园环境中实时准确检测和定位冬枣的模型。","authors":"Chenhao Yu, Xiaoyi Shi, Wenkai Luo, Junzhe Feng, Zhouzhou Zheng, Ayanori Yorozu, Yaohua Hu, Jiapan Guo","doi":"10.34133/plantphenomics.0258","DOIUrl":null,"url":null,"abstract":"<p><p>Our research focuses on winter jujube trees and is conducted in a greenhouse environment in a structured orchard to effectively control various growth conditions. The development of a robotic system for winter jujube harvesting is crucial for achieving mechanized harvesting. Harvesting winter jujubes efficiently requires accurate detection and location. To address this issue, we proposed a winter jujube detection and localization method based on the MobileVit-Large selective kernel-GSConv-YOLO (MLG-YOLO) model. First, a winter jujube dataset is constructed to comprise various scenarios of lighting conditions and leaf obstructions to train the model. Subsequently, the MLG-YOLO model based on YOLOv8n is proposed, with improvements including the incorporation of MobileViT to reconstruct the backbone and keep the model more lightweight. The neck is enhanced with LSKblock to capture broader contextual information, and the lightweight convolutional technology GSConv is introduced to further improve the detection accuracy. Finally, a 3-dimensional localization method combining MLG-YOLO with RGB-D cameras is proposed. Through ablation studies, comparative experiments, 3-dimensional localization error tests, and full-scale tree detection tests in laboratory environments and structured orchard environments, the effectiveness of the MLG-YOLO model in detecting and locating winter jujubes is confirmed. With MLG-YOLO, the mAP increases by 3.50%, while the number of parameters is reduced by 61.03% in comparison with the baseline YOLOv8n model. Compared with mainstream object detection models, MLG-YOLO excels in both detection accuracy and model size, with a mAP of 92.70%, a precision of 86.80%, a recall of 84.50%, and a model size of only 2.52 MB. The average detection accuracy in the laboratory environmental testing of winter jujube reached 100%, and the structured orchard environmental accuracy reached 92.82%. The absolute positioning errors in the <i>X</i>, <i>Y</i>, and <i>Z</i> directions are 4.20, 4.70, and 3.90 mm, respectively. This method enables accurate detection and localization of winter jujubes, providing technical support for winter jujube harvesting robots.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418275/pdf/","citationCount":"0","resultStr":"{\"title\":\"MLG-YOLO: A Model for Real-Time Accurate Detection and Localization of Winter Jujube in Complex Structured Orchard Environments.\",\"authors\":\"Chenhao Yu, Xiaoyi Shi, Wenkai Luo, Junzhe Feng, Zhouzhou Zheng, Ayanori Yorozu, Yaohua Hu, Jiapan Guo\",\"doi\":\"10.34133/plantphenomics.0258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our research focuses on winter jujube trees and is conducted in a greenhouse environment in a structured orchard to effectively control various growth conditions. The development of a robotic system for winter jujube harvesting is crucial for achieving mechanized harvesting. Harvesting winter jujubes efficiently requires accurate detection and location. To address this issue, we proposed a winter jujube detection and localization method based on the MobileVit-Large selective kernel-GSConv-YOLO (MLG-YOLO) model. First, a winter jujube dataset is constructed to comprise various scenarios of lighting conditions and leaf obstructions to train the model. Subsequently, the MLG-YOLO model based on YOLOv8n is proposed, with improvements including the incorporation of MobileViT to reconstruct the backbone and keep the model more lightweight. The neck is enhanced with LSKblock to capture broader contextual information, and the lightweight convolutional technology GSConv is introduced to further improve the detection accuracy. Finally, a 3-dimensional localization method combining MLG-YOLO with RGB-D cameras is proposed. Through ablation studies, comparative experiments, 3-dimensional localization error tests, and full-scale tree detection tests in laboratory environments and structured orchard environments, the effectiveness of the MLG-YOLO model in detecting and locating winter jujubes is confirmed. With MLG-YOLO, the mAP increases by 3.50%, while the number of parameters is reduced by 61.03% in comparison with the baseline YOLOv8n model. Compared with mainstream object detection models, MLG-YOLO excels in both detection accuracy and model size, with a mAP of 92.70%, a precision of 86.80%, a recall of 84.50%, and a model size of only 2.52 MB. The average detection accuracy in the laboratory environmental testing of winter jujube reached 100%, and the structured orchard environmental accuracy reached 92.82%. The absolute positioning errors in the <i>X</i>, <i>Y</i>, and <i>Z</i> directions are 4.20, 4.70, and 3.90 mm, respectively. This method enables accurate detection and localization of winter jujubes, providing technical support for winter jujube harvesting robots.</p>\",\"PeriodicalId\":20318,\"journal\":{\"name\":\"Plant Phenomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418275/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Phenomics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.34133/plantphenomics.0258\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0258","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
MLG-YOLO: A Model for Real-Time Accurate Detection and Localization of Winter Jujube in Complex Structured Orchard Environments.
Our research focuses on winter jujube trees and is conducted in a greenhouse environment in a structured orchard to effectively control various growth conditions. The development of a robotic system for winter jujube harvesting is crucial for achieving mechanized harvesting. Harvesting winter jujubes efficiently requires accurate detection and location. To address this issue, we proposed a winter jujube detection and localization method based on the MobileVit-Large selective kernel-GSConv-YOLO (MLG-YOLO) model. First, a winter jujube dataset is constructed to comprise various scenarios of lighting conditions and leaf obstructions to train the model. Subsequently, the MLG-YOLO model based on YOLOv8n is proposed, with improvements including the incorporation of MobileViT to reconstruct the backbone and keep the model more lightweight. The neck is enhanced with LSKblock to capture broader contextual information, and the lightweight convolutional technology GSConv is introduced to further improve the detection accuracy. Finally, a 3-dimensional localization method combining MLG-YOLO with RGB-D cameras is proposed. Through ablation studies, comparative experiments, 3-dimensional localization error tests, and full-scale tree detection tests in laboratory environments and structured orchard environments, the effectiveness of the MLG-YOLO model in detecting and locating winter jujubes is confirmed. With MLG-YOLO, the mAP increases by 3.50%, while the number of parameters is reduced by 61.03% in comparison with the baseline YOLOv8n model. Compared with mainstream object detection models, MLG-YOLO excels in both detection accuracy and model size, with a mAP of 92.70%, a precision of 86.80%, a recall of 84.50%, and a model size of only 2.52 MB. The average detection accuracy in the laboratory environmental testing of winter jujube reached 100%, and the structured orchard environmental accuracy reached 92.82%. The absolute positioning errors in the X, Y, and Z directions are 4.20, 4.70, and 3.90 mm, respectively. This method enables accurate detection and localization of winter jujubes, providing technical support for winter jujube harvesting robots.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.