Evaluating the Influence of Row Orientation and Crown Morphology on Growth of Pinus taeda L. with Drone-Based Airborne Laser Scanning.

IF 7.6 1区 农林科学 Q1 AGRONOMY
Plant Phenomics Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI:10.34133/plantphenomics.0264
Matthew J Sumnall, David R Carter, Timothy J Albaugh, Rachel L Cook, Otávio C Campoe, Rafael A Rubilar
{"title":"Evaluating the Influence of Row Orientation and Crown Morphology on Growth of <i>Pinus taeda L</i>. with Drone-Based Airborne Laser Scanning.","authors":"Matthew J Sumnall, David R Carter, Timothy J Albaugh, Rachel L Cook, Otávio C Campoe, Rafael A Rubilar","doi":"10.34133/plantphenomics.0264","DOIUrl":null,"url":null,"abstract":"<p><p>The tree crown's directionality of growth may be an indicator of how aggressive the tree is in terms of foraging for light. Airborne drone laser scanning (DLS) has been used to accurately classify individual tree crowns (ITCs) and derive size metrics related to the crown. We compare ITCs among 6 genotypes exhibiting different crown architectures in managed loblolly pine (<i>Pinus taeda L.</i>) in the United States. DLS data are classified into ITC objects, and we present novel methods to calculate ITC shape metrics. Tree stems are located using (a) model-based clustering and (b) weighting cluster-based size. We generated ITC shape metrics using 3-dimensional (3D) alphashapes in 2 DLS acquisitions of the same location, 4 years apart. Crown horizontal distance from the stem was estimated at multiple heights, in addition to calculating 3D volume in specific azimuths. Crown morphologies varied significantly (<i>P</i> < 0.05) spatially, temporally, and among the 6 genotypes. Most genotypes exhibited larger crown volumes facing south (150° to 173°). We found that crown asymmetries were consistent with (a) the direction of solar radiation, (b) the spatial arrangement and proximity of the neighboring crowns, and (c) genotype. Larger crowns were consistent with larger increases in stem volume, but that increases in the southern portions of crown volume were consistent with larger stem volume increases, than in the north. This finding suggests that row orientation could influence stem growth rates in plantations, particularly impacting earlier development. These differences can potentially reduce over time, especially if stands are not thinned in a timely manner once canopy growing space has diminished.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0264"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0264","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The tree crown's directionality of growth may be an indicator of how aggressive the tree is in terms of foraging for light. Airborne drone laser scanning (DLS) has been used to accurately classify individual tree crowns (ITCs) and derive size metrics related to the crown. We compare ITCs among 6 genotypes exhibiting different crown architectures in managed loblolly pine (Pinus taeda L.) in the United States. DLS data are classified into ITC objects, and we present novel methods to calculate ITC shape metrics. Tree stems are located using (a) model-based clustering and (b) weighting cluster-based size. We generated ITC shape metrics using 3-dimensional (3D) alphashapes in 2 DLS acquisitions of the same location, 4 years apart. Crown horizontal distance from the stem was estimated at multiple heights, in addition to calculating 3D volume in specific azimuths. Crown morphologies varied significantly (P < 0.05) spatially, temporally, and among the 6 genotypes. Most genotypes exhibited larger crown volumes facing south (150° to 173°). We found that crown asymmetries were consistent with (a) the direction of solar radiation, (b) the spatial arrangement and proximity of the neighboring crowns, and (c) genotype. Larger crowns were consistent with larger increases in stem volume, but that increases in the southern portions of crown volume were consistent with larger stem volume increases, than in the north. This finding suggests that row orientation could influence stem growth rates in plantations, particularly impacting earlier development. These differences can potentially reduce over time, especially if stands are not thinned in a timely manner once canopy growing space has diminished.

利用无人机机载激光扫描技术评估行向和树冠形态对尾叶松生长的影响
树冠的生长方向性可能是树木觅光积极性的指标。机载无人机激光扫描(DLS)已被用于对单个树冠(ITC)进行精确分类,并得出与树冠相关的尺寸指标。我们对美国受管理的龙柏(Pinus taeda L.)中表现出不同树冠结构的 6 种基因型的 ITC 进行了比较。我们将 DLS 数据分类为 ITC 对象,并提出了计算 ITC 形状指标的新方法。使用(a)基于模型的聚类和(b)基于聚类大小的加权对树干进行定位。我们使用相隔 4 年对同一地点进行的 2 次 DLS 采集中的三维 (3D) 字母形状生成 ITC 形状度量。除了计算特定方位角的三维体积外,还从多个高度估算了树冠与树干的水平距离。树冠形态在空间、时间和 6 个基因型之间都有显著差异(P < 0.05)。大多数基因型朝南的树冠体积较大(150°至173°)。我们发现,树冠的不对称性与以下因素有关:(a)太阳辐射的方向;(b)相邻树冠的空间排列和距离;(c)基因型。较大的树冠与较大的茎量增加相一致,但树冠体积南部的增加与茎量的增加相一致,而北部的增加与茎量的增加相一致。这一发现表明,行向可能会影响种植园的茎干生长率,特别是影响早期发育。随着时间的推移,这些差异可能会缩小,特别是如果树冠生长空间缩小后,林分没有及时疏伐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Phenomics
Plant Phenomics Multiple-
CiteScore
8.60
自引率
9.20%
发文量
26
审稿时长
14 weeks
期刊介绍: Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals. The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics. The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信