T Ishigure, T Sasase, M Tohma, K Uno, Y Toriniwa, T Saito, Y Saigo, K Edamura, K Miyajima, T Ohta
{"title":"Western Diet-Induced Nonalcoholic Fatty Liver Disease Mice Mimic the Key Transcriptomic Signatures Observed in Humans.","authors":"T Ishigure, T Sasase, M Tohma, K Uno, Y Toriniwa, T Saito, Y Saigo, K Edamura, K Miyajima, T Ohta","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by the accumulation of fat in the liver in the absence of excessive alcohol consumption or a secondary cause of hepatic steatosis. The prevalence of NAFLD is increasing worldwide and its management has become a public health concern. Animal models are traditionally used to elucidate disease mechanisms and identify potential drug targets; however, their translational aspects in human diseases have not been fully established. This study aimed to clarify the utility of animal models for translational research by assessing their relevance to human diseases using gene expression analysis. Weighted gene co-expression network analysis of liver tissues from Western diet (WD)-induced NAFLD mice was performed to identify the modules associated with disease progression. Moreover, the similarity of the gene co-expression network across species was evaluated using module preservation analysis. Nineteen disease-associated modules were identified. The brown module was positively associated with disease severity, and functional analyses indicated that it may be involved in inflammatory responses in immune cells. Moreover, the gene co-expression network of the brown module was highly preserved in human NAFLD liver gene expression datasets. These results indicate that WD-induced NAFLD mice have similar gene co-expression networks (especially genes associated with inflammatory responses) to humans and are thought to be a useful experimental tool for preclinical research on NAFLD. Keywords: Nonalcoholic fatty liver disease (NAFLD), Weighted gene co-expression network analysis (WGCNA), Western diet (WD).</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 4","pages":"593-608"},"PeriodicalIF":1.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E Scott Sills, C Harrity, H I Chu, J W Wang, S H Wood, S L Tan
{"title":"First Application of Whole Genome Sequencing in Myelinated Retinal Nerve Fibers (MRNF).","authors":"E Scott Sills, C Harrity, H I Chu, J W Wang, S H Wood, S L Tan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Genetic features are currently unknown in myelinated retinal nerve fibers (MRNF). For a 20-year-old asymptomatic female with unilateral MRNF, we performed whole genome sequencing (WGS) by standard workflow protocol to produce contiguous long-read sequences with Illumina DNA PCR-Free Prep. After tagmentation, libraries were sequenced on separate runs via NovaSeq 6000 platform at 2 x 150bp read length. Gene variants included rs2248799, rs2672589, rs7555070, rs247616_T and rs2043085_C all associated with an increased macular degeneration risk, and seven novel variants of uncertain significance. For optic disc enlargement, variants rs9988687_A, rs11079419_T, rs6787363 and rs10862708_A suggested an increased risk for this condition. In contrast, modeling revealed retinal detachment risk was reduced by variants identified at rs9651980_T, rs4373767_T, and rs7940691_T which were among five other previously unreported variants. WGS data placed proband at the 66th and 64th percentiles for disc anomaly and retinal detachment risk, respectively. Additionally, risk determined from 16 loci associated with age-related macular degeneration found the patient to be at the 18th percentile for this diagnosis (i.e., below average genetic predisposition). Fundoscopic findings showed mean RNFL thickness was lower with MRNF (77 OS vs. 96?m OD) and RNFL symmetry was impaired (43 %) but stable between 2020 and 2023. Rim area and cup volume were also substantially different (2.33 OS vs. 1.34mm2 OD, and 0.001 OS vs. 0.151mm3 OD, respectively). As the first known evaluation of MRNF via WGS, these data reveal a mixed picture with variants associated with different risks for potentially related ocular pathologies. In addition, we identify multiple new variants of unknown significance. Factors affecting gene expression in MRNF require further study. Key words: Whole genome sequencing, Retina, Myelination, Anatomy, Gene variants.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 4","pages":"665-670"},"PeriodicalIF":1.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physiological researchPub Date : 2024-08-31Epub Date: 2024-07-17DOI: 10.33549/physiolres.935396
I Sabinari, O Horakova, T Cajka, V Kleinova, M R Wieckowski, M Rossmeisl
{"title":"Influence of Lipid Class Used for Omega-3 Fatty Acid Supplementation on Liver Fat Accumulation in MASLD.","authors":"I Sabinari, O Horakova, T Cajka, V Kleinova, M R Wieckowski, M Rossmeisl","doi":"10.33549/physiolres.935396","DOIUrl":"10.33549/physiolres.935396","url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) occurs in subjects with obesity and metabolic syndrome. MASLD may progress from simple steatosis (i.e., hepatic steatosis) to steatohepatitis, characterized by inflammatory changes and liver cell damage, substantially increasing mortality. Lifestyle measures associated with weight loss and/or appropriate diet help reduce liver fat accumulation, thereby potentially limiting progression to steatohepatitis. As for diet, both total energy and macronutrient composition significantly influence the liver's fat content. For example, the type of dietary fatty acids can affect the metabolism of lipids and hence their tissue accumulation, with saturated fatty acids having a greater ability to promote fat storage in the liver than polyunsaturated ones. In particular, polyunsaturated fatty acids of n-3 series (omega-3), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been intensively studied for their antisteatotic effects, both in preclinical animal models of obesity and hepatic steatosis and in overweight/obese patients. Their effects may depend not only on the dose and duration of administration of omega-3, or DHA/EPA ratio, but also on the lipid class used for their supplementation. This review summarizes the available evidence from recent comparative studies using omega-3 supplementation via different lipid classes. Albeit the evidence is mainly limited to preclinical studies, it suggests that phospholipids and possibly wax esters could provide greater efficacy against MASLD compared to traditional chemical forms of omega-3 supplementation (i.e., triacylglycerols, ethyl esters). This cannot be attributed solely to improved EPA and/or DHA bioavailability, but other mechanisms may be involved. Keywords: MASLD • Metabolic dysfunction-associated steatotic liver disease • NAFLD • Non-alcoholic fatty liver disease • n-3 polyunsaturated fatty acids.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":" ","pages":"S295-S320"},"PeriodicalIF":1.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physiological researchPub Date : 2024-08-30Epub Date: 2024-04-22DOI: 10.33549/physiolres.935269
P Ježek, A Dlasková, H Engstová, J Špačková, J Tauber, P Průchová, E Kloppel, O Mozheitova, M Jabůrek
{"title":"Mitochondrial Physiology of Cellular Redox Regulations.","authors":"P Ježek, A Dlasková, H Engstová, J Špačková, J Tauber, P Průchová, E Kloppel, O Mozheitova, M Jabůrek","doi":"10.33549/physiolres.935269","DOIUrl":"10.33549/physiolres.935269","url":null,"abstract":"<p><p>Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":" ","pages":"S217-S242"},"PeriodicalIF":1.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolomics and Lipidomics for Studying Metabolic Syndrome: Insights into Cardiovascular Diseases, Type 1 & 2 Diabetes, and Metabolic Dysfunction-Associated Steatotic Liver Disease.","authors":"S Rakusanova, T Cajka","doi":"10.33549/physiolres.935443","DOIUrl":"10.33549/physiolres.935443","url":null,"abstract":"<p><p>Metabolomics and lipidomics have emerged as tools in understanding the connections of metabolic syndrome (MetS) with cardiovascular diseases (CVD), type 1 and type 2 diabetes (T1D, T2D), and metabolic dysfunction-associated steatotic liver disease (MASLD). This review highlights the applications of these omics approaches in large-scale cohort studies, emphasizing their role in biomarker discovery and disease prediction. Integrating metabolomics and lipidomics has significantly advanced our understanding of MetS pathology by identifying unique metabolic signatures associated with disease progression. However, challenges such as standardizing analytical workflows, data interpretation, and biomarker validation remain critical for translating research findings into clinical practice. Future research should focus on optimizing these methodologies to enhance their clinical utility and address the global burden of MetS-related diseases.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 S1","pages":"S165-S183"},"PeriodicalIF":1.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physiological researchPub Date : 2024-08-30Epub Date: 2024-06-05DOI: 10.33549/physiolres.935406
K Papoušková, K Černá, V Radova, O Zimmermannová
{"title":"The Role of Cornichons in the Biogenesis and Functioning of Monovalent-Cation Transport Systems.","authors":"K Papoušková, K Černá, V Radova, O Zimmermannová","doi":"10.33549/physiolres.935406","DOIUrl":"10.33549/physiolres.935406","url":null,"abstract":"<p><p>Monovalent-cation homeostasis, crucial for all living cells, is ensured by the activity of various types of ion transport systems located either in the plasma membrane or in the membranes of organelles. A key prerequisite for the functioning of ion-transporting proteins is their proper trafficking to the target membrane. The cornichon family of COPII cargo receptors is highly conserved in eukaryotic cells. By simultaneously binding their cargoes and a COPII-coat subunit, cornichons promote the incorporation of cargo proteins into the COPII vesicles and, consequently, the efficient trafficking of cargoes via the secretory pathway. In this review, we summarize current knowledge about cornichon proteins (CNIH/Erv14), with an emphasis on yeast and mammalian cornichons and their role in monovalent-cation homeostasis. Saccharomyces cerevisiae cornichon Erv14 serves as a cargo receptor of a large portion of plasma-membrane proteins, including several monovalent-cation transporters. By promoting the proper targeting of at least three housekeeping ion transport systems, Na+, K+/H+ antiporter Nha1, K+ importer Trk1 and K+ channel Tok1, Erv14 appears to play a complex role in the maintenance of alkali-metal-cation homeostasis. Despite their connection to serious human diseases, the repertoire of identified cargoes of mammalian cornichons is much more limited. The majority of current information is about the structure and functioning of CNIH2 and CNIH3 as auxiliary subunits of AMPAR multi-protein complexes. Based on their unique properties and easy genetic manipulation, we propose yeast cells to be a useful tool for uncovering a broader spectrum of human cornichons´ cargoes.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":" ","pages":"S199-S215"},"PeriodicalIF":1.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physiological researchPub Date : 2024-08-30Epub Date: 2024-05-15DOI: 10.33549/physiolres.935261
J Brejchova, K Brejchova, O Kuda
{"title":"Metabolic Pathways of Acylcarnitine Synthesis.","authors":"J Brejchova, K Brejchova, O Kuda","doi":"10.33549/physiolres.935261","DOIUrl":"10.33549/physiolres.935261","url":null,"abstract":"<p><p>Acylcarnitines are important markers in metabolic studies of many diseases, including metabolic, cardiovascular, and neurological disorders. We reviewed analytical methods for analyzing acylcarnitines with respect to the available molecular structural information, the technical limitations of legacy methods, and the potential of new mass spectrometry-based techniques to provide new information on metabolite structure. We summarized the nomenclature of acylcarnitines based on historical common names and common abbreviations, and we propose the use of systematic abbreviations derived from the shorthand notation for lipid structures. The transition to systematic nomenclature will facilitate acylcarnitine annotation, reporting, and standardization in metabolomics. We have reviewed the metabolic origins of acylcarnitines important for the biological interpretation of human metabolomic profiles. We identified neglected isomers of acylcarnitines and summarized the metabolic pathways involved in the synthesis and degradation of acylcarnitines, including branched-chain lipids and amino acids. We reviewed the primary literature, mapped the metabolic transformations of acyl-CoAs to acylcarnitines, and created a freely available WikiPathway WP5423 to help researchers navigate the acylcarnitine field. The WikiPathway was curated, metabolites and metabolic reactions were annotated, and references were included. We also provide a table for conversion between common names and abbreviations and systematic abbreviations linked to the LIPID MAPS or Human Metabolome Database.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":" ","pages":"S153-S163"},"PeriodicalIF":1.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412349/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physiological researchPub Date : 2024-08-30Epub Date: 2024-07-02DOI: 10.33549/physiolres.935401
M Neřoldová, A Stuchlík
{"title":"Chemogenetic Tools and their Use in Studies of Neuropsychiatric Disorders.","authors":"M Neřoldová, A Stuchlík","doi":"10.33549/physiolres.935401","DOIUrl":"10.33549/physiolres.935401","url":null,"abstract":"<p><p>Chemogenetics is a newly developed set of tools that allow for selective manipulation of cell activity. They consist of a receptor mutated irresponsive to endogenous ligands and a synthetic ligand that does not interact with the wild-type receptors. Many different types of these receptors and their respective ligands for inhibiting or excitating neuronal subpopulations were designed in the past few decades. It has been mainly the G-protein coupled receptors (GPCRs) selectively responding to clozapine-N-oxide (CNO), namely Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), that have been employed in research. Chemogenetics offers great possibilities since the activity of the receptors is reversible, inducible on demand by the ligand, and non-invasive. Also, specific groups or types of neurons can be selectively manipulated thanks to the delivery by viral vectors. The effect of the chemogenetic receptors on neurons lasts longer, and even chronic activation can be achieved. That can be useful for behavioral testing. The great advantage of chemogenetic tools is especially apparent in research on brain diseases since they can manipulate whole neuronal circuits and connections between different brain areas. Many psychiatric or other brain diseases revolve around the dysfunction of specific brain networks. Therefore, chemogenetics presents a powerful tool for investigating the underlying mechanisms causing the disease and revealing the link between the circuit dysfunction and the behavioral or cognitive symptoms observed in patients. It could also contribute to the development of more effective treatments.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":" ","pages":"S449-S470"},"PeriodicalIF":1.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physiological researchPub Date : 2024-08-30Epub Date: 2024-05-15DOI: 10.33549/physiolres.935293
M Dzubanova, A Benova, M Ferencakova, R Coupeau, M Tencerova
{"title":"Nutrition and Bone Marrow Adiposity in Relation to Bone Health.","authors":"M Dzubanova, A Benova, M Ferencakova, R Coupeau, M Tencerova","doi":"10.33549/physiolres.935293","DOIUrl":"10.33549/physiolres.935293","url":null,"abstract":"<p><p>Bone remodeling is energetically demanding process. Energy coming from nutrients present in the diet contributes to function of different cell type including osteoblasts, osteocytes and osteoclasts in bone marrow participating in bone homeostasis. With aging, obesity and osteoporosis the function of key building blocks, bone marrow stromal cells (BMSCs), changes towards higher accumulation of bone marrow adipose tissue (BMAT) and decreased bone mass, which is affected by diet and sex dimorphism. Men and women have unique nutritional needs based on physiological and hormonal changes across the life span. However, the exact molecular mechanisms behind these pathophysiological conditions in bone are not well-known. In this review, we focus on bone and BMAT physiology in men and women and how this approach has been taken by animal studies. Furthermore, we discuss the different diet interventions and impact on bone and BMAT in respect to sex differences. We also discuss the future perspective on precision nutrition with a consideration of sex-based differences which could bring better understanding of the diet intervention in bone health and weight management.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":" ","pages":"S107-S138"},"PeriodicalIF":1.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physiological researchPub Date : 2024-08-30Epub Date: 2024-04-22DOI: 10.33549/physiolres.935292
J Janáček
{"title":"Mathematical Models of Diffusion in Physiology.","authors":"J Janáček","doi":"10.33549/physiolres.935292","DOIUrl":"10.33549/physiolres.935292","url":null,"abstract":"<p><p>Diffusion is a mass transport phenomenon caused by chaotic thermal movements of molecules. Studying the transport in specific domain is simplified by using evolutionary differential equations for local concentration of the molecules instead of complete information on molecular paths [1]. Compounds in a fluid mixture tend to smooth out its spatial concentration inhomogeneities by diffusion. Rate of the transport is proportional to the concentration gradient and coefficient of diffusion of the compound in ordinary diffusion. The evolving concentration profile c(x,t) is then solution of evolutionary partial differential equation deltac/deltat=DDeltac where D is diffusion coefficient and Delta is Laplacian operator. Domain of the equation may be a region in space, plane or line, a manifold, such as surface embedded in space, or a graph. The Laplacian operates on smooth functions defined on given domain. We can use models of diffusion for such diverse tasks as: a) design of method for precise measurement of receptors mobility in plasmatic membrane by confocal microscopy [2], b) evaluation of complex geometry of trabeculae in developing heart [3] to show that the conduction pathway within the embryonic ventricle is determined by geometry of the trabeculae.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":" ","pages":"S471-S476"},"PeriodicalIF":1.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412344/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}