S L Archer, K J Dunham-Snary, Ret Bentley, E Alizadeh, E K Weir
{"title":"缺氧性肺血管收缩:体内平衡氧传感系统的重要组成部分","authors":"S L Archer, K J Dunham-Snary, Ret Bentley, E Alizadeh, E K Weir","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxic pulmonary vasoconstriction (HPV) rapidly and reversibly matches lung ventilation (V) and perfusion (Q), optimizing oxygen uptake and systemic oxygen delivery. HPV occurs in small pulmonary arteries (PA), which uniquely constrict to hypoxia. Although HPV is modulated by the endothelium the core mechanism of HPV resides in PA smooth muscle cells (PASMC). The PASMC's mitochondrial oxygen sensor lies within the electron transport chain (ETC) and includes NDUFS2 in ETC Complex-I. PASMC mitochondria respond to hypoxia by varying production of reactive oxygen species (ROS) and hydrogen peroxide in proportion to alveolar oxygen tension. Hypoxic ROS inhibition results in a state of reduction which triggers a redox-mediated inhibition of oxygen-sensitive, voltage-gated, potassium channels, including Kv1.5 and Kv2.1. Kv channel inhibition depolarizes the PASMC, opening of large-conductance calcium channels (CaL), elevating cytosolic calcium and activating the contractile apparatus. HPV is strongest in small PAs where sensors (hypoxia-responsive mitochondria) and effectors (oxygen-sensitive K+ channels) are enriched. Oxygenation at birth reverses fetal HPV, contributing to the rapid neonatal drop in pulmonary vascular resistance (PVR). A similar mitochon-drial-K+ channel sensor-effector mechanism exists in the ductus arteriosus (DA), however in DASMC it is oxygen-induced increases in mitochondrial ROS that inhibit DASMC K+ channels, causing DA constriction. Atelectasis and pneumonia elicit HPV, which optimises V/Q matching, increasing systemic oxygenation. Whilst HPV in response to localized hypoxia in a single lung lobe does not increase PA pressure; global airway hypoxia, as occurs with altitude or sleep apnea, causes pulmonary hypertension. HPV can be inhibited by drugs, including calcium channel blockers, or used to maintain a dry operative field during single lung anesthesia for lung surgery. HPV does not normally cause lung edema but excessive, heterogenous HPV contributes to high altitude pulmonary edema. HPV is suppressed in COVID-19 pneumonia by a SARS-CoV-2 mitochondriopathy. HPV is a component of the body's homeostatic oxygen sensing system. Keywords: Ductus arteriosus, Redox, NDUFS2, Oxygen sensitive potassium, Channels, High altitude pulmonary edema (HAPE), Mitochondrial electron transport chain, COVID-19 pneumonia, Atelectasis.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 S2","pages":"S493-S510"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627260/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hypoxic Pulmonary Vasoconstriction: An Important Component of the Homeostatic Oxygen Sensing System.\",\"authors\":\"S L Archer, K J Dunham-Snary, Ret Bentley, E Alizadeh, E K Weir\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxic pulmonary vasoconstriction (HPV) rapidly and reversibly matches lung ventilation (V) and perfusion (Q), optimizing oxygen uptake and systemic oxygen delivery. HPV occurs in small pulmonary arteries (PA), which uniquely constrict to hypoxia. Although HPV is modulated by the endothelium the core mechanism of HPV resides in PA smooth muscle cells (PASMC). The PASMC's mitochondrial oxygen sensor lies within the electron transport chain (ETC) and includes NDUFS2 in ETC Complex-I. PASMC mitochondria respond to hypoxia by varying production of reactive oxygen species (ROS) and hydrogen peroxide in proportion to alveolar oxygen tension. Hypoxic ROS inhibition results in a state of reduction which triggers a redox-mediated inhibition of oxygen-sensitive, voltage-gated, potassium channels, including Kv1.5 and Kv2.1. Kv channel inhibition depolarizes the PASMC, opening of large-conductance calcium channels (CaL), elevating cytosolic calcium and activating the contractile apparatus. HPV is strongest in small PAs where sensors (hypoxia-responsive mitochondria) and effectors (oxygen-sensitive K+ channels) are enriched. Oxygenation at birth reverses fetal HPV, contributing to the rapid neonatal drop in pulmonary vascular resistance (PVR). A similar mitochon-drial-K+ channel sensor-effector mechanism exists in the ductus arteriosus (DA), however in DASMC it is oxygen-induced increases in mitochondrial ROS that inhibit DASMC K+ channels, causing DA constriction. Atelectasis and pneumonia elicit HPV, which optimises V/Q matching, increasing systemic oxygenation. Whilst HPV in response to localized hypoxia in a single lung lobe does not increase PA pressure; global airway hypoxia, as occurs with altitude or sleep apnea, causes pulmonary hypertension. HPV can be inhibited by drugs, including calcium channel blockers, or used to maintain a dry operative field during single lung anesthesia for lung surgery. HPV does not normally cause lung edema but excessive, heterogenous HPV contributes to high altitude pulmonary edema. HPV is suppressed in COVID-19 pneumonia by a SARS-CoV-2 mitochondriopathy. HPV is a component of the body's homeostatic oxygen sensing system. Keywords: Ductus arteriosus, Redox, NDUFS2, Oxygen sensitive potassium, Channels, High altitude pulmonary edema (HAPE), Mitochondrial electron transport chain, COVID-19 pneumonia, Atelectasis.</p>\",\"PeriodicalId\":20235,\"journal\":{\"name\":\"Physiological research\",\"volume\":\"73 S2\",\"pages\":\"S493-S510\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627260/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological research","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Hypoxic Pulmonary Vasoconstriction: An Important Component of the Homeostatic Oxygen Sensing System.
Hypoxic pulmonary vasoconstriction (HPV) rapidly and reversibly matches lung ventilation (V) and perfusion (Q), optimizing oxygen uptake and systemic oxygen delivery. HPV occurs in small pulmonary arteries (PA), which uniquely constrict to hypoxia. Although HPV is modulated by the endothelium the core mechanism of HPV resides in PA smooth muscle cells (PASMC). The PASMC's mitochondrial oxygen sensor lies within the electron transport chain (ETC) and includes NDUFS2 in ETC Complex-I. PASMC mitochondria respond to hypoxia by varying production of reactive oxygen species (ROS) and hydrogen peroxide in proportion to alveolar oxygen tension. Hypoxic ROS inhibition results in a state of reduction which triggers a redox-mediated inhibition of oxygen-sensitive, voltage-gated, potassium channels, including Kv1.5 and Kv2.1. Kv channel inhibition depolarizes the PASMC, opening of large-conductance calcium channels (CaL), elevating cytosolic calcium and activating the contractile apparatus. HPV is strongest in small PAs where sensors (hypoxia-responsive mitochondria) and effectors (oxygen-sensitive K+ channels) are enriched. Oxygenation at birth reverses fetal HPV, contributing to the rapid neonatal drop in pulmonary vascular resistance (PVR). A similar mitochon-drial-K+ channel sensor-effector mechanism exists in the ductus arteriosus (DA), however in DASMC it is oxygen-induced increases in mitochondrial ROS that inhibit DASMC K+ channels, causing DA constriction. Atelectasis and pneumonia elicit HPV, which optimises V/Q matching, increasing systemic oxygenation. Whilst HPV in response to localized hypoxia in a single lung lobe does not increase PA pressure; global airway hypoxia, as occurs with altitude or sleep apnea, causes pulmonary hypertension. HPV can be inhibited by drugs, including calcium channel blockers, or used to maintain a dry operative field during single lung anesthesia for lung surgery. HPV does not normally cause lung edema but excessive, heterogenous HPV contributes to high altitude pulmonary edema. HPV is suppressed in COVID-19 pneumonia by a SARS-CoV-2 mitochondriopathy. HPV is a component of the body's homeostatic oxygen sensing system. Keywords: Ductus arteriosus, Redox, NDUFS2, Oxygen sensitive potassium, Channels, High altitude pulmonary edema (HAPE), Mitochondrial electron transport chain, COVID-19 pneumonia, Atelectasis.
期刊介绍:
Physiological Research is a peer reviewed Open Access journal that publishes articles on normal and pathological physiology, biochemistry, biophysics, and pharmacology.
Authors can submit original, previously unpublished research articles, review articles, rapid or short communications.
Instructions for Authors - Respect the instructions carefully when submitting your manuscript. Submitted manuscripts or revised manuscripts that do not follow these Instructions will not be included into the peer-review process.
The articles are available in full versions as pdf files beginning with volume 40, 1991.
The journal publishes the online Ahead of Print /Pre-Press version of the articles that are searchable in Medline and can be cited.