J Doul, O Gawrys, P Škaroupková, Z Vaňourková, B Szeiffová Bačová, M Sýkora, H Maxová, L Hošková, M Šnorek, J Sadowski, M Táborský, L Červenka
{"title":"Effects of renal denervation on the course of cardiorenal syndrome: insight from studies with fawn-hooded hypertensive rats.","authors":"J Doul, O Gawrys, P Škaroupková, Z Vaňourková, B Szeiffová Bačová, M Sýkora, H Maxová, L Hošková, M Šnorek, J Sadowski, M Táborský, L Červenka","doi":"10.33549/physiolres.935469","DOIUrl":"10.33549/physiolres.935469","url":null,"abstract":"<p><p>Combination of chronic kidney disease (CKD) and heart failure (HF) results in extremely high morbidity and mortality. The current guideline-directed medical therapy is rarely effective and new therapeutic approaches are urgently needed. The study was designed to examine if renal denervation (RDN) will exhibit long-standing beneficial effects on the HF- and CKD-related morbidity and mortality. Fawn-hooded hypertensive rats (FHH) served as a genetic model of CKD and fawn-hooded low-pressure rats (FHL) without CKD served as controls. HF was induced by creation of aorto-caval fistula (ACF). RDN was performed 28 days after creation of ACF and the follow-up period was 70 days. ACF FHH subjected to sham-RDN had survival rate of 34 % i.e. significantly lower than 79 % observed in sham-denervated ACF FHL. RDN did not improve the condition and the final survival rate, both in ACF FHL and in ACF FHH. In FHH basal albuminuria was markedly higher than in FHL, and further increased throughout the study. RDN did not lower albuminuria and did not reduce renal glomerular damage in FHH. In these rats creation of ACF resulted in marked bilateral cardiac hypertrophy and alterations of cardiac connexin-43, however, RDN did not modify any of the cardiac parameters. Our present results further support the notion that kidney damage aggravates the HF-related morbidity and mortality. Moreover, it is clear that in the ACF FHH model of combined CKD and HF, RDN does not exhibit any important renoprotective or cardioprotective effects and does not reduce mortality. Key words Chronic kidney disease, Heart failure, Renal denervation, Fawn-hooded hypertensive rats.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 S3","pages":"S737-S754"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Javorka, D Švec, V Bikia, B Czippelová, N Stergiopulos, J Čerňanová Krohová
{"title":"In silico validation of non-invasive arterial compliance estimation and potential determinants of its variability.","authors":"M Javorka, D Švec, V Bikia, B Czippelová, N Stergiopulos, J Čerňanová Krohová","doi":"10.33549/physiolres.935466","DOIUrl":"10.33549/physiolres.935466","url":null,"abstract":"<p><p>Arterial compliance (AC) is an important cardiovascular parameter characterizing mechanical properties of arteries. AC is significantly influenced by arterial wall structure and vasomotion, and it markedly influences cardiac load. A new method, based on a two-element Windkessel model, has been recently proposed for estimating AC as the ratio of the time constant T of the diastolic blood pressure decay and peripheral vascular resistance derived from clinically available stroke volume measurements and selected peripheral blood pressure parameters which are less prone to peripheral distortions. The aim of this study was to validate AC estimation using a virtual population generated by in silico model of the systemic arterial tree. In the second part of study, we analysed causal coupling between AC oscillations and variability of its potential determinants - systolic blood pressure and heart rate in healthy young human subjects. The pool of virtual subjects (n=3818) represented an extensive AC distribution. AC was estimated from the peripheral blood pressure curve and by the standard method from the aortic blood pressure curve. The proposed method slightly overestimated AC set in the model but both ACs were strongly correlated (r=0.94, p<0.001). In real data, we observed that AC dynamics was coupled with basic cardiovascular parameters variability independently of the autonomic nervous system state. In silico analysis suggests that AC can be reliably estimated by noninvasive method. The analysis of short-term AC variability together with its determinants could improve our understanding of factors involved in AC dynamics potentially improving assessment of AC changes associated with atherosclerosis process. Key words Arterial compliance, Cardiovascular model, Arterial blood pressure, Causal analysis, Volume-clamp photoplethysmography.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 S3","pages":"S771-S780"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Risk impact of SARS-CoV-2 coronavirus and spike protein on cardiac tissue: a comprehensive review.","authors":"O Šerý, R Dziedzinska","doi":"10.33549/physiolres.935476","DOIUrl":"10.33549/physiolres.935476","url":null,"abstract":"<p><p>The global COVID-19 pandemic, caused by SARS-CoV-2, has led to significant morbidity and mortality, with a profound impact on cardiovascular health. This review investigates the mechanisms of SARS-CoV-2's interaction with cardiac tissue, particularly emphasizing the role of the Spike protein and ACE2 receptor in facilitating viral entry and subsequent cardiac complications. We dissect the structural features of the virus, its interactions with host cell receptors, and the resulting pathophysiological changes in the heart. Highlighting SARS-CoV-2's broad organ tropism, especially its effects on cardiomyocytes via ACE2 and TMPRSS2, the review addresses how these interactions exacerbate cardiovascular issues in patients with pre-existing conditions such as diabetes and hypertension. Additionally, we assess both direct and indirect mechanisms of virus-induced cardiac damage, including myocarditis, arrhythmias, and long-term complications such as 'long COVID'. This review underscores the complexity of SARS-CoV-2's impact on the heart, emphasizing the need for ongoing research to fully understand its long-term effects on cardiovascular health. Key words: COVID-19, Heart, ACE2, Spike protein, Cardiomyocytes, Myocarditis, Long COVID.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 S3","pages":"S655-S669"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"50 years of the Czech and Slovak Society of Experimental Cardiology - historical background and scientific benefit.","authors":"B Ostadal, M Novakova, J Slezak","doi":"10.33549/physiolres.935538","DOIUrl":"10.33549/physiolres.935538","url":null,"abstract":"<p><p>The history of the Czech and Slovak experimental cardiology describes a completely unusual curve. The personality of J.E. Purkynje caused this field to reach unprecedented peak at the very beginning of its modern history. The development of experimental cardiology after the death of the great scholar was certainly not linear. Just when it seemed to be raising its head, the German occupation came. Its second hopeful awakening was delayed for a long time by forty years of isolation. The significant limitation of foreign contacts gradually led to the loss of hopefully developing contacts, to professional isolation and lagging behind the stormy development of world science. At the moment of greatest depression, in 1971, in Prague there was created a professional forum that was supposed to enable its intellectual survival and reduce the negative consequences of the \"splendid isolation\". The Society of Experimental Cardiology (SEC) was founded at the Czechoslovak Physiological Society of the Czechoslovak Medical Society J.E. Purkynje, with the main task of introducing theoretical and clinical cardiologists to the advances in world cardiology. The first meeting was held in 1973 and in 2023 we celebrated already the 50th anniversary of SEC. Moreover, nowadays we see the increasing interest of the young researchers, both experimental and clinical cardiologists, who consider SEC a very attractive platform for their education and professional growth. Key words: Experimental cardiology, Czech and Slovak Society, History, Relationship to clinical cardiology.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 S3","pages":"S641-S653"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V Kučerová, D Karásek, O Krystyník, L Štefaničková, V Němeček, D Friedecký
{"title":"Adipokine Levels of RBP4, Resistin and Nesfatin-1 in Women Diagnosed With Gestational Diabetes.","authors":"V Kučerová, D Karásek, O Krystyník, L Štefaničková, V Němeček, D Friedecký","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Gestational diabetes mellitus (GDM) is a common complication of pregnancy in which women without previously diagnosed diabetes develop chronic hyperglycemia during pregnancy. It is associated with a number of maternal and fetal/neonatal complications. The role of the adipokines retinol binding protein-4, resistin and nesfatin-1 in the development of GDM is relatively poorly understood, but their role in glucose metabolism is suspected and their use as early markers to predict the development of GDM is being sought. The aim of study was to determine the correlation between the levels of selected adipokines (retinol binding protein-4, resistin, nesfatin-1) in women with gestational diabetes mellitus (GDM) and healthy pregnant women and to compare their levels with other clinical and biochemical parameters. Patients with GDM had significantly higher BMI (28.4±4.5 vs. 24.6±4 kg/m2), total cholesterol (6±1.3 vs. 5.3±1.4 mmol/l) and triacylglycerols (1.9±0.8 vs. 1.4±0.7 mmol/l) than women in the control group. RBP4 confirms the significant difference between the groups, it is higher in the control group of healthy pregnant women. The adipokines resistin and nesfatin-1 show no differences between the control and GDM groups, but their ratios with BMI, cholesterol and triacylglycerols, resistin shows elevated levels in the control group. In women with GDM, RBP4 was significantly positively correlated with C-peptide and negatively correlated with total, LDL, and non-HDL cholesterol. Resistin was also negatively correlated with total, LDL, HDL, and non-HDL cholesterol. Nesfatin-1 was only moderately positively correlated with glycated hemoglobin (HbA1C) and fasting glycemia. There is ambiguity in the results of previous studies on the levels of the investigated adipokines in pregnant women with GDM and the interpretation depends on many factors. Keywords: Gestational diabetes, Adipokines, Retinol-binding protein 4, Resistin, Nesfatin-1.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 6","pages":"1037-1048"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Ferko, P Alanova, D Janko, B Opletalova, N Andelova
{"title":"Mitochondrial Peroxiredoxins and Monoamine Oxidase-A: Dynamic Regulators of ROS Signaling in Cardioprotection.","authors":"M Ferko, P Alanova, D Janko, B Opletalova, N Andelova","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>An excessive increase in reactive oxygen species (ROS) levels is one of the main causes of mitochondrial dysfunction. However, when ROS levels are maintained in balance with antioxidant mechanisms, ROS fulfill the role of signaling molecules and modulate various physiological processes. Recent advances in mitochondrial bioenergetics research have revealed a significant interplay between mitochondrial peroxiredoxins (PRDXs) and monoamine oxidase-A (MAO-A) in regulating ROS levels. Both proteins are associated with hydrogen peroxide (H2O2), MAO-A as a producer and PRDXs as the primary antioxidant scavengers of H2O2. This review focuses on the currently available knowledge on the function of these proteins and their interaction, highlighting their importance in regulating oxidative damage, apoptosis, and metabolic adaptation in the heart. PRDXs not only scavenge excess H2O2, but also act as regulatory proteins, play an active role in redox signaling, and maintain mitochondrial membrane integrity. Overexpression of MAO-A is associated with increased oxidative damage, leading to mitochondrial dysfunction and subsequent progression of cardiovascular diseases (CVD), including ischemia/reperfusion injury and heart failure. Considering the central role of oxidative damage in the pathogenesis of many CVD, targeting PRDXs activation and MAO-A inhibition may offer new therapeutic strategies aimed at improving cardiac function under conditions of pathological load related to oxidative damage. Keywords: Mitochondria, Peroxiredoxin, Monoamine oxidase-A, Reactive oxygen species, Cardioprotective signaling.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 6","pages":"887-900"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T Lerchner, J Jedlička, M Kripnerová, J Dejmek, J Kuncová
{"title":"Influence of micro- and nanoplastics on mitochondrial function in the cardiovascular system: a review of the current literature.","authors":"T Lerchner, J Jedlička, M Kripnerová, J Dejmek, J Kuncová","doi":"10.33549/physiolres.935500","DOIUrl":"10.33549/physiolres.935500","url":null,"abstract":"<p><p>Mitochondria represent pivotal cellular organelles endowed with multifaceted functionalities encompassing cellular respiration, metabolic processes, calcium turnover, and the regulation of apoptosis, primarily through the generation of reactive oxygen species (ROS). Perturbations in mitochondrial dynamics have been intricately linked to the etiology of numerous cardiovascular pathologies, such as heart failure, ischemic heart disease, and various cardiomyopathies. Notably, recent attention has been directed towards the detrimental impact of micro- and nanoplastic pollution on mitochondrial integrity, an area underscored by a paucity of comprehensive investigations. Given the escalating prevalence of plastic particle contamination and the concomitant burden of cardiovascular disease in aging populations, understanding the interplay between mitochondria within the cardiovascular system and micro- and nanoplastic pollution assumes paramount importance. This review endeavors to elucidate the current albeit limited comprehension surrounding this complex interplay. Key words Mitochondria, Nanoplastics, Microplastics, Cardiovascular system, Endothelial function, Oxidative phosphorylation.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 S3","pages":"S685-S695"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New possibilities of the prevention and treatment of cardiovascular pathologies. the potential of molecular hydrogen in the reduction of oxidative stress and its consequences.","authors":"J Slezák, T Ravingerová, B Kura","doi":"10.33549/physiolres.935491","DOIUrl":"10.33549/physiolres.935491","url":null,"abstract":"<p><p>Disproportion between reactive oxygen species (ROS) production and the body's antioxidant system can cause oxidative stress, which is considered a common denominator in various pathological conditions, including cardiovascular diseases, aging, and cognitive disorders. The generation of free radicals, which occurs through partial reduction of oxygen, can quickly overwhelm the endogenous antioxidant system capacity of the cell. This causes lipid, protein, DNA and RNA damage, inflammation, and overall cell degeneration, which can be mitigated by various antioxidants. However, their use in human medicine did not bring the expected effect. Molecular hydrogen (H2), due to its unique physical and chemical properties, provides a number of benefits for alleviating oxidative stress. H2 is superior to conventional antioxidants as it can selectively reduce (.)OH radicals while preserving important ROS that are otherwise used for normal cell signaling. Key words Oxidative stress, Cardiovascular diseases, Molecular hydrogen, ROS, Inflammation.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 S3","pages":"S671-S684"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LDHA- Mediated Histone Lactylation Promotes the Nonalcoholic Fatty Liver Disease Progression Through Targeting The METTL3/ YTHDF1/SCD1 m6A Axis.","authors":"J Meng, C Yan, J Liu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Nonalcoholic fatty liver disease (NAFLD) is characterized by elevated hepatic lipids caused by nonalcoholic factors, where histone lactylation is lately discovered as a modification driving disease progression. This research aimed to explore the role of histone 3 lysine 18 lactylation (H3K18lac) in NAFLD progression using a high-fat diet (HFD)-treated mouse model and free fatty acids (FFA)-treated L-02 cell lines. Lipids accumulation was screened via Oil Red O staining, real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, and commercially available kits. Similarly, molecular mechanism was analyzed using immunoprecipitation (IP), dual-luciferase reporter assay, and RNA decay assay. Results indicated that FFA upregulated lactate dehydrogenase A (LDHA) and H3K18lac levels in L-02 cells. Besides, LDHA-mediated H3K18lac was enriched on the proximal promoter of methyltransferase 3 (METTL3), translating into an increased expression. Moreover, METTL3 or LDHA knockdown relieved lipid accumulation, decreased total cholesterol (TC) and triglyceride (TG) levels, and downregulated lipogenesis-related proteins in FFA-treated L-02 cell lines, in addition to enhancing the m6A and mRNA levels of stearoyl-coenzyme A desaturase 1 (SCD1). The m6A modification of SCD1 was recognized by YTH N6-methyladenosine RNA binding protein F1 (YTHDF1), resulting in enhanced mRNA stability. LDHA was found to be highly expressed in HFD-treated mice, where knocking down LDHA attenuated HFD-induced hepatic steatosis. These findings demonstrated that LDHA-induced H3K18lac promoted NAFLD progression, where LDHA-induced H3K18lac in METTL3 promoter elevated METTL3 expression, thereby promoting m6A methylation and stabilizing SCD1 via a YTHDF1-dependent manner. Keywords: Nonalcoholic fatty liver disease, LDHA, METTL3, YTHDF1, Histone lactylation.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 6","pages":"985-999"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Altered Balance between Vasoconstrictor and Vasodilator Systems in Experimental Hypertension.","authors":"J Zicha, I Vaněčková","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Sympathetic hyperactivity and relative NO deficiency are characteristic alterations in both genetic and salt hypertension. The contribution of these abnormalities to blood pressure (BP) maintenance can be determined in conscious rats using a consecutive blockade of particular vasoactive systems. Thus, the contribution of pressor effects of angiotensin II to the maintenance of high BP is usually small, but the role of renin-angiotensin system in the development of hypertension mediated by central and peripheral effects of angiotensin II on sympathetic activity is highly important. This is even true in angiotensin-dependent hypertension of heterozygous Ren-2 transgenic rats in which sympathetic hyperactivity is increasing with age. Central sympathoexcitation in this hypertensive model can be inhibited by lower losartan doses than peripheral angiotensin II-dependent vasoconstriction. This experimental model also yielded important knowledge on nephroprotective effects of new therapeutic drugs - endothelin receptor type A blockers. A considerable part of sympathetic vasoconstriction is dependent on the interaction of Ca2+ sensitization (RhoA/Rho kinase pathway) and Ca2+ influx (through L-VDCC). The blockade of these pathways prevents a major part of sympathetic vasoconstriction. Ca2+ sensitization seems to be attenuated in genetic hypertension in order to compensate increased Ca2+ influx. In contrast, enhanced Ca2+ sensitization is a hallmark of salt sensitivity in Dahl rats in which salt hypertension is dependent on increased Ca2+ influx. The attention should also be paid to the impairment of arterial baroreflex sensitivity which permits enhanced BP responses to pressor or depressor stimuli. Some abnormalities can be studied in blood vessels isolated from hypertensive rats but neither conduit arteries nor mesenteric resistance arteries represent the vascular beds decisive for the increased peripheral resistance and high BP. Keywords: Sympathetic vasoconstriction, NO-dependent vasodilatation, Calcium sensitization, Calcium influx, Arterial baroreflex, Spontaneously hypertensive rats, Salt hypertensive Dahl rats, Ren-2 transgenic rats, RAS blockade, SNS blockade, NOS inhibition, Endothelin, Vascular contraction and relaxation, Isolated conduit and resistance arteries, EDCF, PGI2, BKCa channels.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 6","pages":"901-928"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835210/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}