Plant Physiology and Biochemistry最新文献

筛选
英文 中文
OsCNGC7 modulates calcium dynamics and accelerates leaf senescence in rice OsCNGC7 调节钙动力学并加速水稻叶片衰老
IF 6.1 2区 生物学
Plant Physiology and Biochemistry Pub Date : 2024-10-11 DOI: 10.1016/j.plaphy.2024.109193
Jun Chang , Ruxuan Zhang , Zhanmeng Fu , Yifan Wang , Jianhui Lei , Junyi Cheng , Caihui Ren , Kunpeng Xu , Chengzhen Gu , Yuanyuan Song , Rensen Zeng , Yuan Qin , Huiying Zhang , Jian Liu
{"title":"OsCNGC7 modulates calcium dynamics and accelerates leaf senescence in rice","authors":"Jun Chang ,&nbsp;Ruxuan Zhang ,&nbsp;Zhanmeng Fu ,&nbsp;Yifan Wang ,&nbsp;Jianhui Lei ,&nbsp;Junyi Cheng ,&nbsp;Caihui Ren ,&nbsp;Kunpeng Xu ,&nbsp;Chengzhen Gu ,&nbsp;Yuanyuan Song ,&nbsp;Rensen Zeng ,&nbsp;Yuan Qin ,&nbsp;Huiying Zhang ,&nbsp;Jian Liu","doi":"10.1016/j.plaphy.2024.109193","DOIUrl":"10.1016/j.plaphy.2024.109193","url":null,"abstract":"<div><div>Calcium plays a crucial role in regulating plant senescence. However, the specific effects of increased intranuclear calcium versus cytoplasmic calcium on aging remain unclear. Cyclic nucleotide-gated channels (CNGCs), which manage Ca<sup>2</sup>⁺ levels in plant cells, are particularly significant in this context. These channels are known to relocate between the nuclear envelope and the plasma membrane in response to stress and developmental signals. Through this movement, CNGCs help regulate the balance of cytosolic and intranuclear Ca<sup>2</sup>⁺. In this study, we categorized the 16 CNGC genes in rice into five subgroups. <em>OsCNGCs</em> are notably expressed in leaves, especially during the reproductive stage. Both OsCNGC6 and OsCNGC7 exhibit dual localization to the plasma membrane and the nuclear envelope. Knockdown of <em>OsCNGC7</em> led to reduced levels of Ca<sup>2</sup>⁺ and K⁺ in plants. Conversely, yeast expressing the <em>OsCNGC7</em> gene showed increased sensitivity to Ca<sup>2</sup>⁺. Additionally, while the [Ca<sup>2</sup>⁺]<sub>cyt</sub> was maintained at relatively low levels in both wild-type and <em>OsCNGC7</em>-RNAi lines, the fluorescence intensity was significantly higher in <em>OsCNGC7</em>-overexpressing lines, particularly in the nucleus of root tips. Overexpression of <em>OsCNGC7</em> resulted in enhanced stomatal opening and accelerated leaf senescence from the tillering stage to grain filling in rice. Treatment with MeJA rapidly induced <em>OsCNGC7</em> expression, while knockdown of <em>OsCNGC7</em> delayed both MeJA-induced and dark-induced leaf senescence. Further analysis revealed that OsCNGC7 interacts with OsKAT2 and OsALMT2. In conclusion, our findings highlight the distinct roles of <em>OsCNGCs</em> in regulating senescence. This knowledge could provide new strategies for manipulating plant senescence and enhancing crop productivity.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"216 ","pages":"Article 109193"},"PeriodicalIF":6.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and functional characterization of the diterpene synthase family in Pogostemon cablin (Blanco) Benth Pogostemon cablin (Blanco) Benth.中二萜合成酶家族的鉴定和功能表征
IF 6.1 2区 生物学
Plant Physiology and Biochemistry Pub Date : 2024-10-10 DOI: 10.1016/j.plaphy.2024.109190
Yiqiong Chen , Yumin Lin , Yingying Qiu , Wanying Li , Yanting Shen , Lili Huang
{"title":"Identification and functional characterization of the diterpene synthase family in Pogostemon cablin (Blanco) Benth","authors":"Yiqiong Chen ,&nbsp;Yumin Lin ,&nbsp;Yingying Qiu ,&nbsp;Wanying Li ,&nbsp;Yanting Shen ,&nbsp;Lili Huang","doi":"10.1016/j.plaphy.2024.109190","DOIUrl":"10.1016/j.plaphy.2024.109190","url":null,"abstract":"<div><div><em>Pogostemon cablin</em> (Blanco) Benth (Patchouli) is an aromatic herb extensively used in pharmaceutical and cosmetic industries. Sesquiterpenes are the characteristic constitutes in patchouli which are synthesized in the glandular trichomes on leaves and stems. Gibberellic acid (GA), a tetracyclic diterpenoid, plays a crucial role in the formation of glandular trichome. However, the diterpene biosynthesis remains largely unknown in patchouli. Here we identified a small diterpene synthases (diTPSs) family comprising three class II diTPSs (PatCPS1-3) and three class I diTPSs (PatKSL1 and PatGLS1-2). These diTPSs are functionally characterized using a yeast heterologous expression system. PatCPS1 was identified as an <em>ent</em>-copalyl diphosphate synthase (<em>ent</em>-CPS), in combination with PatKSL1, yield <em>ent</em>-kaurene, the precursor of GA, indicating their involvement in primary metabolism. PatCPS2 converted GGPP into (+)-8, 13-copalyl diphosphate (CPP). No activity was detected for PatCPS3, PatGLS1 and PatGLS2. Three ohnologs of <em>PatCPS1</em> were further characterized to explore the possible functional differentiation of <em>ent</em>-CPS during the evolution of tetraploid hybrid patchouli genome. GC-MS analysis showed all ohnologs are functional <em>ent</em>-CPSs, demonstrating the functional conservation of PatCPS1 during evolution. Expression profiling by qRT-PCR showed <em>PatCPS1</em> and <em>PatKSL1</em> are ubiquitously expressed in all tissues, consistent with their involvement in primary metabolism. Conversely, <em>PatCPS2</em> and <em>PatCPS3</em> were predominantly expressed in the above ground parts, indicating a role in specialized metabolism. In summary, these findings clarify the early stages of GA biosynthesis in patchouli and provide gene elements for further metabolic engineering of sesquiterpenes via diterpenoids.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"216 ","pages":"Article 109190"},"PeriodicalIF":6.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide identification and expression analysis of SlKFB gene family (Solanum lycopersicum) and the molecular mechanism of SlKFB16 and SlKFB34 under drought SlKFB基因家族(Solanum lycopersicum)的全基因组鉴定和表达分析以及SlKFB16和SlKFB34在干旱条件下的分子机制
IF 6.1 2区 生物学
Plant Physiology and Biochemistry Pub Date : 2024-10-10 DOI: 10.1016/j.plaphy.2024.109192
Lei Yu , Xiaoyu Guan , Fanyue Meng , Fulei Mo , Rui Lv , Zhen Ding , Peiwen Wang , Xiuling Chen , Mozhen Cheng , Aoxue Wang
{"title":"Genome-wide identification and expression analysis of SlKFB gene family (Solanum lycopersicum) and the molecular mechanism of SlKFB16 and SlKFB34 under drought","authors":"Lei Yu ,&nbsp;Xiaoyu Guan ,&nbsp;Fanyue Meng ,&nbsp;Fulei Mo ,&nbsp;Rui Lv ,&nbsp;Zhen Ding ,&nbsp;Peiwen Wang ,&nbsp;Xiuling Chen ,&nbsp;Mozhen Cheng ,&nbsp;Aoxue Wang","doi":"10.1016/j.plaphy.2024.109192","DOIUrl":"10.1016/j.plaphy.2024.109192","url":null,"abstract":"<div><div>Environmental stress significantly affects plant growth and productivity. The effects of drought stress on plants are reflected primarily in enzyme activity, membrane systems, and cell-water loss. Here, the Kelch repeat F-box (KFB) protein family in tomato was systematically identified and analysed. Using bioinformatics, we identified 37 <em>SlKFB</em> family members in the tomato genome and analysed their protein structure, phylogenetic relationships, chromosome distribution, and expression under drought or biotic-stress conditions. Transcriptome data revealed that <em>SlKFB</em> members exhibit differential responses to drought stress, with significant differences in <em>SlKFB16</em> and <em>SlKFB34</em> expression. Functional analysis revealed that <em>SlKFB16</em> functions in the cytoplasm and <em>SlKFB34</em> in the nucleus and cytoplasm. Under drought stress, <em>SlKFB16</em> and <em>SlKFB34</em>-silencing significantly reduced reactive oxygen species scavenging and resistance to drought stress. These findings provide a reference for further studies of the mechanisms of <em>SlKFB16</em> and <em>SlKFB34</em> in drought stress in tomato as well as a foundation for enhancing their resistance to drought stress.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"216 ","pages":"Article 109192"},"PeriodicalIF":6.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combined transcriptome and physiological analysis reveals exogenous sucrose enhances photosynthesis and source capacity in foxtail millet 转录组和生理分析相结合揭示外源蔗糖可提高狐尾黍的光合作用和源能力
IF 6.1 2区 生物学
Plant Physiology and Biochemistry Pub Date : 2024-10-10 DOI: 10.1016/j.plaphy.2024.109189
Mengmeng Sun , Yongchao Li , Yunhao Chen , Dan-Ying Chen , Haiyu Wang , Jianhong Ren , Meijun Guo , Shuqi Dong , Xiaorui Li , Guanghui Yang , Lulu Gao , Xiaoqian Chu , Jia-Gang Wang , Xiangyang Yuan
{"title":"Combined transcriptome and physiological analysis reveals exogenous sucrose enhances photosynthesis and source capacity in foxtail millet","authors":"Mengmeng Sun ,&nbsp;Yongchao Li ,&nbsp;Yunhao Chen ,&nbsp;Dan-Ying Chen ,&nbsp;Haiyu Wang ,&nbsp;Jianhong Ren ,&nbsp;Meijun Guo ,&nbsp;Shuqi Dong ,&nbsp;Xiaorui Li ,&nbsp;Guanghui Yang ,&nbsp;Lulu Gao ,&nbsp;Xiaoqian Chu ,&nbsp;Jia-Gang Wang ,&nbsp;Xiangyang Yuan","doi":"10.1016/j.plaphy.2024.109189","DOIUrl":"10.1016/j.plaphy.2024.109189","url":null,"abstract":"<div><div>Foxtail millet (<em>Setaria italica</em> (L.) P. Beauv.) is an environmentally friendly crop that meets the current requirements of international food security and is widely accepted as a photosynthesis research model. However, whether exogenous sucrose treatment has a positive effect on foxtail millet growth remains unknown. Here, we employed physiological and molecular approaches to identify photosynthesis and source capacity associated with exogenous sucrose during the growth of Jingu 21 seedlings. RNA-seq analysis showed that some differentially expressed genes (DEGs) related to photosynthesis and carotenoid biosynthesis were induced by exogenous sucrose and that most of these genes were up-regulated. An increase in gas exchange parameters, chlorophyll content, and chlorophyll fluorescence of Jingu 21 was noted after exogenous sucrose addition. Furthermore, exogenous sucrose up-regulated genes encoding sucrose and hexose transporters and enhanced starch and sucrose metabolism. More DEGs were up-regulated by sucrose, the nonstructural carbohydrate (NSC) content in the leaves increased and energy metabolism and sucrose loading subsequently improved, ultimately enhancing photosynthesis under normal and dark conditions. Further analysis revealed that WRKYs, ERFs, HY5, RAP2, and ABI5 could be key transcription factors involved in growth regulation. These results indicate that exogenous sucrose affects the normal photosynthetic performance of foxtail millet by increasing NSC transport and loading. They improve our understanding of the molecular mechanisms of the effects of exogenous sucrose on photosynthesis in foxtail millet, providing an effective measure to enhance source–sink relationships and improve yield.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"216 ","pages":"Article 109189"},"PeriodicalIF":6.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome wide analysis of HMA gene family in Hydrangea macrophylla and characterization of HmHMA2 in response to aluminum stress 大绣球花 HMA 基因家族的全基因组分析及 HmHMA2 对铝胁迫的响应特征
IF 6.1 2区 生物学
Plant Physiology and Biochemistry Pub Date : 2024-10-09 DOI: 10.1016/j.plaphy.2024.109182
Muhammad Zulfiqar Ahmad , Shuangshuang Chen , Xiangyu Qi , Jing Feng , Huijie Chen , Xintong Liu , Ming Sun , Yanming Deng
{"title":"Genome wide analysis of HMA gene family in Hydrangea macrophylla and characterization of HmHMA2 in response to aluminum stress","authors":"Muhammad Zulfiqar Ahmad ,&nbsp;Shuangshuang Chen ,&nbsp;Xiangyu Qi ,&nbsp;Jing Feng ,&nbsp;Huijie Chen ,&nbsp;Xintong Liu ,&nbsp;Ming Sun ,&nbsp;Yanming Deng","doi":"10.1016/j.plaphy.2024.109182","DOIUrl":"10.1016/j.plaphy.2024.109182","url":null,"abstract":"<div><div>Aluminum toxicity poses a significant threat to plant growth, especially in acidic soils. Heavy metal ATPases (HMAs) are crucial for transporting heavy metal ions across plant cell membranes, yet their role in Al<sup>3+</sup> transport remains unexplored. This study identified eight <em>HmHMA</em> genes in the genome of Hydrangea macrophylla, categorizing them into two major clades based on phylogenetic relationships. These genes were found unevenly distributed across six chromosomes. Detailed analysis of their physicochemical properties, collinearity, and gene structure was conducted. RNA-seq and qRT-PCR analyses revealed that specific <em>HmHMA</em> genes, notably HmHMA2, were predominantly expressed in roots and flowers under Al<sup>3+</sup> stress, indicating their potential role in Al<sup>3+</sup> tolerance. HmHMA2 showed significant expression in roots, especially under Al<sup>3+</sup> stress conditions, and when expressed in yeast cells, it conferred resistance to aluminum and zinc but increased sensitivity to cadmium. Overexpression of HmHMA2 in hydrangea leaf discs significantly improved Al<sup>3+</sup> tolerance, reduced oxidative stress markers like hydrogen peroxide and malondialdehyde, and enhanced antioxidant enzyme activity such as SOD, POD and CAT compared to controls. These findings shed lights on the potential role of HmHMAs in Al transport and tolerance in H. macrophylla.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"216 ","pages":"Article 109182"},"PeriodicalIF":6.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advantages of compost tea: Promotion of nitrogen influx into the fruit and improvement of fruit nitrogen metabolism in tomato 堆肥茶的优点:促进番茄果实的氮流入,改善果实的氮代谢
IF 6.1 2区 生物学
Plant Physiology and Biochemistry Pub Date : 2024-10-09 DOI: 10.1016/j.plaphy.2024.109184
Wenxin Li , Yuxin Liu , Xinru Chai , Jiaxing He , Chang Liu , Jianming Li
{"title":"Advantages of compost tea: Promotion of nitrogen influx into the fruit and improvement of fruit nitrogen metabolism in tomato","authors":"Wenxin Li ,&nbsp;Yuxin Liu ,&nbsp;Xinru Chai ,&nbsp;Jiaxing He ,&nbsp;Chang Liu ,&nbsp;Jianming Li","doi":"10.1016/j.plaphy.2024.109184","DOIUrl":"10.1016/j.plaphy.2024.109184","url":null,"abstract":"<div><div>The use of compost tea is important to improve food safety. However, the effect of compost tea on N uptake and partitioning in tomato is unclear. In this study, we measured temporal and spatial changes in nitrogen content, enzyme activities, and expression levels of nitrogen transporters genes in different organs of tomato treated with five nutrient solutions. The results showed that the expression levels of ammonium transporter protein genes (<em>AMT1s</em>) increased and that of a nitrogen transporters gene (<em>NRT2.1</em>) decreased under treatment with compost tea, which promoted NH<sub>4</sub><sup>+</sup> transport to the fruit and reduced nutrient wastage compared with the response to chemical fertilizers. In addition, the lowermost leaves on the stem showed reduced nitrate content, faster metabolism, and decreased chlorophyll <em>a</em> content, but fruit yield was not increased, in compost tea-treated plants. These changes were dependent on the expression level of the glutamine synthetase gene (<em>GS1.1</em>), which was increased in leaves and decreased in fruit. Compost tea influenced the expression of critical genes in the fruits and leaves, and improved the competitiveness of sexual reproductive growth as a sink for nitrogen. However, the benefits of compost tea were reduced when it was mixed chemical fertilizers. This research establishes a theoretical framework for optimization of organic vegetable cultivation and promoting the widespread production of organic crops.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"216 ","pages":"Article 109184"},"PeriodicalIF":6.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of temperature on morphology, physiology, and metabolic profile of diazotrophic cyanobacteria inhabiting diverse habitats 温度对栖息于不同生境的重氮蓝藻的形态、生理和代谢特征的影响。
IF 6.1 2区 生物学
Plant Physiology and Biochemistry Pub Date : 2024-10-09 DOI: 10.1016/j.plaphy.2024.109186
Nasreen Amin, Megha Jaiswal, Vinod K. Kannaujiya
{"title":"Effects of temperature on morphology, physiology, and metabolic profile of diazotrophic cyanobacteria inhabiting diverse habitats","authors":"Nasreen Amin,&nbsp;Megha Jaiswal,&nbsp;Vinod K. Kannaujiya","doi":"10.1016/j.plaphy.2024.109186","DOIUrl":"10.1016/j.plaphy.2024.109186","url":null,"abstract":"<div><div>Global population expansion has increased the demand for food supply and agricultural productivity. Abiotic stressors like temperature have significantly restricted agriculture in cropland and jeopardized food security. Cyanobacteria play a crucial role in fostering sustainable agriculture and ensuring global food security. In the present study, we have assessed the effect of temperatures on diazotrophic free living rice-field and hot-spring cyanobacteria. They were treated to a variable range of temperatures to see the changes in cellular morphology, physiology, and biochemical characteristics. The rise of temperatures induces growth (60 %), total protein (54 %) contents of rice-field cyanobacterium until 25 °C, further treatment results in decline (20 %) at 45 °C. However, growth indices were increased till 35 °C (90 %) in hot-spring cyanobacterium and further treatment did not exhibit a significant decline in the same. However, the reactive oxygen species (ROS) generation and lipid peroxidation (LPO) were higher in rice-field (2.8 and 1.7 fold) as compared to hot-spring cyanobacterium (2.2 and 1.6 fold). In response to temperature, enzymatic antioxidant contents were much higher in hot-spring as compared to rice-field cyanobacterium. Similarly, carotenoid and carbohydrate content was also higher in hot spring (2 fold) as compared to rice-field cyanobacterium (1.5 and 1.2 fold). All these data collectively suggest that hot-spring (<em>Nostoc</em> sp. strain VKB02) has a higher thermoprotective capacity with novel defense mechanisms as compared to rice-field cyanobacterium (<em>Anabaena</em> sp<em>.</em> strain VKB01). These findings contributed to a better understanding of the temperature stress, improvement of agricultural productivity and future welfare of green ecosystems.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"216 ","pages":"Article 109186"},"PeriodicalIF":6.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation mechanism of exogenous nitric oxide on phenanthrene uptake by ryegrass roots 外源一氧化氮对黑麦草根系吸收菲的调节机制
IF 6.1 2区 生物学
Plant Physiology and Biochemistry Pub Date : 2024-10-08 DOI: 10.1016/j.plaphy.2024.109185
Chenghao Huang, Fei Huang, Xuke Wang, Dongru Wang, Jiawei Wang, Xinhua Zhan
{"title":"Regulation mechanism of exogenous nitric oxide on phenanthrene uptake by ryegrass roots","authors":"Chenghao Huang,&nbsp;Fei Huang,&nbsp;Xuke Wang,&nbsp;Dongru Wang,&nbsp;Jiawei Wang,&nbsp;Xinhua Zhan","doi":"10.1016/j.plaphy.2024.109185","DOIUrl":"10.1016/j.plaphy.2024.109185","url":null,"abstract":"<div><div>Polycyclic aromatic hydrocarbons (PAHs) constitute a category of persistent organic contaminants that possess the potential to induce carcinogenic, teratogenic, and mutagenic consequences. Our previous findings have revealed that plant roots actively take up PAHs through co-transport with protons, and auxin can promote PAHs uptake by wheat roots. It remains unclear whether nitric oxide (NO), a signaling molecule involved in numerous physiological processes in plants and downstream of auxin, can affect PAHs uptake by plant roots. In our study, 50 μmol/L sodium nitroprusside (SNP) significantly enhanced phenanthrene uptake after 4 h of exposure. After the addition of SNP (50 μmol/L), the H<sup>+</sup> flux on root surface increased, and H<sup>+</sup>-ATPase activity was activated, indicating that exogenous NO promotes phenanthrene uptake by plant roots via activating H<sup>+</sup>-ATPase. By studying the effects of 50 μmol/L cyclic guanosine monophosphate (cGMP), 5 mmol/L Ca<sup>2+</sup>, and 50 μmol/L adenosine monophosphate (AMP) on phenanthrene uptake by ryegrass roots and measuring root calcium-dependent protein kinases (CDPK) activity, we demonstrated that exogenous NO promotes phenanthrene uptake through the signaling pathway of NO, cGMP, Ca<sup>2+</sup>, CDPK, 14-3-3 protein and H<sup>+</sup>-ATPase. The results contribute significant insights into elucidating the underlying mechanisms of NO modulating PAHs absorption by plant roots, thereby offering crucial strategies for advancing food safety measures and enhancing the phytoremediation potential of soils and waters contaminated with PAHs.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"216 ","pages":"Article 109185"},"PeriodicalIF":6.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Xyloglucan endotransglucosylase-hydrolase 1 is a negative regulator of drought tolerance in barley via modulating lignin biosynthesis and stomatal closure 木聚糖内转糖基酶-水解酶1是大麦耐旱性的负调控因子,它通过调节木质素的生物合成和气孔关闭来提高大麦的耐旱性。
IF 6.1 2区 生物学
Plant Physiology and Biochemistry Pub Date : 2024-10-05 DOI: 10.1016/j.plaphy.2024.109171
Man-Man Fu , Fangbin Cao , Cheng-Wei Qiu , Chen Liu , Tao Tong , Xue Feng , Shengguan Cai , Zhong-Hua Chen , Feibo Wu
{"title":"Xyloglucan endotransglucosylase-hydrolase 1 is a negative regulator of drought tolerance in barley via modulating lignin biosynthesis and stomatal closure","authors":"Man-Man Fu ,&nbsp;Fangbin Cao ,&nbsp;Cheng-Wei Qiu ,&nbsp;Chen Liu ,&nbsp;Tao Tong ,&nbsp;Xue Feng ,&nbsp;Shengguan Cai ,&nbsp;Zhong-Hua Chen ,&nbsp;Feibo Wu","doi":"10.1016/j.plaphy.2024.109171","DOIUrl":"10.1016/j.plaphy.2024.109171","url":null,"abstract":"<div><div>The projected increase in drought severity and duration worldwide poses a significant threat to crop growth and sustainable food production. Xyloglucan endotransglucosylase/hydrolases (XTHs) family is essential in cell wall modification through the construction and restructuring of xyloglucan cross-links, but their role in drought tolerance and stomatal regulation is still illusive. We cloned and functionally characterized <em>HvXTH1</em> using genetic, physiological, biochemical, transcriptomic and metabolomic approaches in barley. Evolutionary bioinformatics showed that orthologues of XTH1 was originated from Streptophyte algae (e.g. some species in the Zygnematales) the closest clade to land plants based on OneKP database. <em>HvXTH1</em> is highly expressed in leaves and HvXTH1 is localized to the plasma membrane. Under drought conditions, silencing <em>HvXTH1</em> in drought-tolerant Tibetan wild barley XZ5 induced a significant reduction in water loss rate and increase in biomass, however overexpressing <em>HvXTH1</em> exhibited drought sensitivity with significantly less drought-responsive stomata, lower lignin content and a thicker cell wall. Transcriptome profile of the wild type Golden Promise and <em>HvXTH1</em>-OX demonstrated that drought-induced differentially expressed genes in leaves are related to cell wall biosynthesis, abscisic acid and stomatal signaling, and stress response. Furthermore, overexpressing <em>HvXTH1</em> suppressed both genes and metabolites in the phenylpropanoid pathway for lignin biosynthesis, leading to drought sensitivity of <em>HvXTH1</em>-OX. We provide new insight by deciphering the function of a novel protein HvXTH1 for drought tolerance in cell wall modification, stomatal regulation, and phenylpropanoid pathway for lignin biosynthesis in barley. The function of HvXTH1 in drought response will be beneficial to develop crop varieties adapted to drought.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"216 ","pages":"Article 109171"},"PeriodicalIF":6.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive studies of the serine carboxypeptidase-like (SCPL) gene family in Carya cathayensis revealed the roles of SCPL4 in epigallocatechin-3-gallate (EGCG) synthesis and drought tolerance 对 Carya cathayensis 中丝氨酸羧肽酶样(SCPL)基因家族的综合研究发现,SCPL4 在表没食子儿茶素-3-棓酸盐(EGCG)合成和抗旱性中发挥作用。
IF 6.1 2区 生物学
Plant Physiology and Biochemistry Pub Date : 2024-10-05 DOI: 10.1016/j.plaphy.2024.109183
Minghao Cao , Ziyue Zhang , Huangpeng Hu , Yuanpeng Wu , Tengjie He , Chunying Huang , Ketao Wang , Qixiang Zhang , Min Cao , Jianqin Huang , Yan Li
{"title":"Comprehensive studies of the serine carboxypeptidase-like (SCPL) gene family in Carya cathayensis revealed the roles of SCPL4 in epigallocatechin-3-gallate (EGCG) synthesis and drought tolerance","authors":"Minghao Cao ,&nbsp;Ziyue Zhang ,&nbsp;Huangpeng Hu ,&nbsp;Yuanpeng Wu ,&nbsp;Tengjie He ,&nbsp;Chunying Huang ,&nbsp;Ketao Wang ,&nbsp;Qixiang Zhang ,&nbsp;Min Cao ,&nbsp;Jianqin Huang ,&nbsp;Yan Li","doi":"10.1016/j.plaphy.2024.109183","DOIUrl":"10.1016/j.plaphy.2024.109183","url":null,"abstract":"<div><div>Hickory (<em>Carya cathayensis</em>) nuts are rich in epigallocatechin-3-gallate (EGCG) with multiple health functions. EGCG also regulates plant growth, development and stress responses. However, research on the synthesis mechanism of EGCG and its function in hickory is currently limited. Herein, 44 serine carboxypeptidase-like (<em>SCPL</em>) members were identified from the hickory genome and classified into three major categories: SCPL-I, SCPL-II, and SCPL-III. In the CcSCPLs-IA branch, <em>CcSCPL3/4/5/8/9/11/13</em> showed differential expression patterns in various tissues, especially with relatively high expression levels in plant roots, female flowers and seed coat. These proteins have a catalytic triad composed of serine (Ser), aspartic acid (Asp) and histidine (His). Ser-His in the triad and arginine (Arg) mediated the docking of CcSCPL3/4/5/11 with 1-<em>O</em>-galloyl-β-<span>d</span>-glucose (βG) and epigallocatechin (EGC), whereas the Asp of the triad did not. CcSCPL4 was further confirmed to promote the synthesis of EGCG in tobacco leaves. CcSCPL4 may function as monomer and be mainly localized within cellular structures outside the nucleus. Notably, the expression level of <em>CcSCPL4</em> significantly changed after drought, cold, and salt stress, with the highest expression level under drought stress. Meanwhile <em>CcSCPL4</em> over-expression could enhance the drought resistance of <em>Saccharomyces cerevisiae</em> and <em>Arabidopsis</em>. This study elucidates key enzymes for EGCG synthesis and their role in drought resistance, providing insights into the EGCG synthesis pathway and molecular breeding of hickory in future.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"216 ","pages":"Article 109183"},"PeriodicalIF":6.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信