Cheng-Wei Qiu , Yi Wu , Li Yao , Fangbin Cao , Zhong-Hua Chen , Feibo Wu
{"title":"Integrated genome-wide association and RNA sequencing analyses reveal key long noncoding RNAs and target genes for drought tolerance in wheat","authors":"Cheng-Wei Qiu , Yi Wu , Li Yao , Fangbin Cao , Zhong-Hua Chen , Feibo Wu","doi":"10.1016/j.plaphy.2025.110190","DOIUrl":null,"url":null,"abstract":"<div><div>Drought poses a major threat to global crop productivity, necessitating the identification of genetic components and regulatory networks underlying drought tolerance in wheat. Here, we integrated genome-wide association studies (GWAS) of 334 diverse wheat accessions with comparative transcriptomic analysis of drought-sensitive and drought-tolerant genotypes. GWAS identified 45 significant SNPs (−log10(<em>p</em>) > 3.5) and 281 candidate genes linked to seedling dry weight loss under drought stress. Transcriptome profiling revealed 821 differentially expressed genes, with co-expression network analysis uncovering 21 drought-responsive long noncoding RNAs (lncRNAs) and their target genes. These targets were enriched in ubiquitin-mediated protein degradation and transcriptional regulation pathways. Notably, lncRNA XR_006461531 was predicted to interact with <em>TaFBX361</em>—a gene co-identified by GWAS and RNA-seq—via a lncRNA-miRNA-mRNA interaction. Functional validation through virus-induced gene silencing (VIGS) demonstrated that knockdown of <em>TaFBX361</em> significantly impaired plant growth and increased oxidative damage under drought, confirming its positive role in stress adaptation. Our findings reveal coordinated coding and noncoding regulatory modules governing drought responses in wheat, with <em>TaFBX361</em> emerging as a promising genetic target for enhancing drought resilience. This study advances the molecular breeding toolkit by integrating multi-omics approaches to dissect complex traits, offering novel insights into lncRNA-mediated regulatory networks in crop abiotic stress tolerance.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"227 ","pages":"Article 110190"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825007181","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Drought poses a major threat to global crop productivity, necessitating the identification of genetic components and regulatory networks underlying drought tolerance in wheat. Here, we integrated genome-wide association studies (GWAS) of 334 diverse wheat accessions with comparative transcriptomic analysis of drought-sensitive and drought-tolerant genotypes. GWAS identified 45 significant SNPs (−log10(p) > 3.5) and 281 candidate genes linked to seedling dry weight loss under drought stress. Transcriptome profiling revealed 821 differentially expressed genes, with co-expression network analysis uncovering 21 drought-responsive long noncoding RNAs (lncRNAs) and their target genes. These targets were enriched in ubiquitin-mediated protein degradation and transcriptional regulation pathways. Notably, lncRNA XR_006461531 was predicted to interact with TaFBX361—a gene co-identified by GWAS and RNA-seq—via a lncRNA-miRNA-mRNA interaction. Functional validation through virus-induced gene silencing (VIGS) demonstrated that knockdown of TaFBX361 significantly impaired plant growth and increased oxidative damage under drought, confirming its positive role in stress adaptation. Our findings reveal coordinated coding and noncoding regulatory modules governing drought responses in wheat, with TaFBX361 emerging as a promising genetic target for enhancing drought resilience. This study advances the molecular breeding toolkit by integrating multi-omics approaches to dissect complex traits, offering novel insights into lncRNA-mediated regulatory networks in crop abiotic stress tolerance.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.