Tomasz Oleszkiewicz, Katarzyna Sala-Cholewa, Kamila Godel-Jędrychowska, Ewa Kurczynska, Anna Kostecka-Gugała, Przemysław Petryszak, Rafal Baranski
{"title":"Nitrogen availability modulates carotene biosynthesis, chromoplast biogenesis, and cell wall composition in carrot callus.","authors":"Tomasz Oleszkiewicz, Katarzyna Sala-Cholewa, Kamila Godel-Jędrychowska, Ewa Kurczynska, Anna Kostecka-Gugała, Przemysław Petryszak, Rafal Baranski","doi":"10.1007/s00299-024-03420-7","DOIUrl":"https://doi.org/10.1007/s00299-024-03420-7","url":null,"abstract":"<p><strong>Key message: </strong>Carrot callus grown on a medium with increased nitrogen have reduced carotenoid accumulation, changed gene expression, high amount of vesicular plastids and altered cell wall composition. Carotenoid biosynthesis is vital for plant development and quality, yet its regulation under varying nutrient conditions remains unclear. To explore the effects of nitrogen (N) availability, we used carrot (Daucus carota L.) model callus cultures in vitro as a controlled system for studying nutrient-regulated metabolic processes. Two mineral media differing in N content and NO₃⁻/NH₄⁺ ratios were used. Comprehensive analyses, HPLC, transmission electron microscopy, immunochemistry, and RNA sequencing, revealed notable cellular and molecular responses to N treatments. The results demonstrated that N supplementation reduced carotenoid content by 50%, particularly β-carotene and α-carotene. The composition of chromoplast types shifted, with vesicular chromoplasts dominating (55%), followed by a globular type (23%), while in the control callus, globular and crystalline types predominated (57% and 33%, respectively). Immunohistochemistry showed increased presence of high-esterified pectins and arabinogalactan proteins in N-treated cells. Transcriptomic analysis identified 1704 differentially expressed genes (DEGs), including only two in the carotenoid biosynthesis pathway: phytoene synthase 2 (PSY2) and zeaxanthin epoxidase (ZEP). PSY2, which encodes the carotenoid rate-limiting enzyme, showed expression levels that corresponded with reduced carotene content. Other DEGs included 15 involved in nitrogen transport, 1 in nitrogen assimilation, 40 in cell wall biosynthesis and modification, and 9 in phenylpropanoid/flavonoid pathways. N-treated callus exhibited altered expression of MADS-box, NLP, bZIP, and ethylene-responsive transcription factors. These findings reveal how nitrogen availability disrupts carotenoid biosynthesis and triggers extensive chromoplast and cell wall remodeling, providing a cellular framework for understanding nutrient-regulated metabolic shifts.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 2","pages":"31"},"PeriodicalIF":5.3,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The petunia heavy metal P-type ATPase PhHMA5II1 interacts with copper chaperons and regulate Cu detoxification.","authors":"Liru Pan, Ruiling Li, Jinglei Wu, Yanbang Li","doi":"10.1007/s00299-024-03387-5","DOIUrl":"https://doi.org/10.1007/s00299-024-03387-5","url":null,"abstract":"<p><strong>Key message: </strong>An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P<sub>1B</sub>-type heavy-metal ATPases (HMAs), PhHMA5II1. Heterologous expression of PhHMA5II1 in yeast (Saccharomyces cerevisiae) showed Cu transport activity. The expression of PhHMA5II1 in roots and shoots was unaffected by excess Cu. CRISPR/Cas9-edited mutant lines and PhHMA5II1 overexpressing transgenic plants were generated to investigate the functions of PhHMA5II1 in petunia. The PhHMA5II1 knockout mutant was hypersensitive to excess Cu and accumulated more Cu in roots compared to wild-type petunia. Overexpression of PhHMA5II1 enhanced Cu tolerance and reduced Cu accumulation in roots. Furthermore, PhHMA5II1 localized in endoplasmic reticulum, and the localization was unaffected by excess Cu. Yeast two-hybrid experiments and bimolecular fluorescence complementation assays demonstrate that PhHMA5II1 interact with petunia copper chaperons, PhATX1 and PhCCH. Finally, RNA-sequencing revealed that knockout PhHMA5II1 affected the expression of genes involved in cell-wall organization, copper ion homeostasis, and response to oxidative stress. Taken together, PhHMA5II1 plays an important role in Cu detoxification in petunia.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 2","pages":"29"},"PeriodicalIF":5.3,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew Nolan, Qi Guo, Lei Liu, Nicolas Dimopoulos, Lennard Garcia-de Heer, Bronwyn J Barkla, Tobias Kretzschmar
{"title":"Characterisation of Cannabis glandular trichome development reveals distinct features of cannabinoid biosynthesis.","authors":"Matthew Nolan, Qi Guo, Lei Liu, Nicolas Dimopoulos, Lennard Garcia-de Heer, Bronwyn J Barkla, Tobias Kretzschmar","doi":"10.1007/s00299-024-03410-9","DOIUrl":"https://doi.org/10.1007/s00299-024-03410-9","url":null,"abstract":"<p><strong>Key message: </strong>Cannabis trichome development progresses in distinct phases that underpin the dynamic biosynthesis of cannabinoids and terpenes. This study investigates the molecular mechanisms underlying cannabinoid and terpenoid biosynthesis in glandular trichomes of Cannabis sativa (CsGTs) throughout their development. Female Cannabis sativa c. Hindu Kush were cultivated under controlled conditions, and trichome development was analysed from week 3 to week 8 of the flowering period. We employed light microscopy, quantitative metabolomics and proteomics to analyse morphological changes in trichome secretory cell development, and temporal changes in metabolite accumulation and protein abundance. Our findings identified three distinct developmental phases: pre-secretory (T3), secretory (T6), and post-secretory (T8), the first time the three phases of trichome development have been identified and investigated in CsGTs. The pre-secretory phase was characterized by smaller secretory cells, limited metabolite accumulation and elevated levels of proteins involved in protein biosynthesis and cellular development. The secretory phase exhibited the highest biosynthetic activity, marked by larger secretory cells, increased plastidal activity, central carbon metabolism, and significant accumulation of cannabinoids and terpenoids. The post-secretory phase showed a decrease in secretory cell size, reduced metabolic activity, and a decrease in the abundance of primary and secondary metabolism enzymes, although THCA continued to accumulate. Key enzymes showed dynamic changes correlating with the stages of trichome development. This study provides a comprehensive understanding of the molecular mechanisms regulating cannabinoid and terpenoid biosynthesis in CsGTs, offering insights for enhancing the production of these valuable compounds through targeted breeding and biotechnological approaches.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 2","pages":"30"},"PeriodicalIF":5.3,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cotton GhMAX2 promotes single-celled fiber elongation by releasing the GhS1FA-mediated inhibition of fatty acid biosynthesis.","authors":"Yaru Sun, Shuangxia Jin, Guoli Song","doi":"10.1007/s00299-024-03422-5","DOIUrl":"10.1007/s00299-024-03422-5","url":null,"abstract":"<p><strong>Key message: </strong>Cotton GhMAX2 positively regulates fiber elongation by mediating the degradation of GhS1FA, which transcriptionally represses GhKCS9 expression. Strigolactones (SLs) are known to promote cotton fiber development. However, the precise molecular relationship between SL signaling and fiber cell elongation remains unclear. In this study, we investigate the role of F-box E3 ligase MORE AXILLARY GROWTH2 (MAX2) in upland cotton in relation to the regulation of fiber development. GhMAX2b and GhMAX2f act as key components for SL signal transduction, with their loss-of-function leading to a notable reduction in fiber length. Biochemical analysis showed that GhMAX2b/f trigger the ubiquitination and subsequent degradation of the transcription repressor strigolactone-1-factor-At (GhS1FA), which function as a substrate for these E3 ligases. Furthermore, GhS1FA inhibits fatty acids biosynthesis by directly binding to the W-box element within the promoter of 3-ketoacyl-CoA synthases 9 (GhKCS9) and repressing its expression. In summary, we propose that GhMAX2b/f promote fiber elongation, potentially operating partially independently of GhD53 degradation.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 2","pages":"26"},"PeriodicalIF":5.3,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overexpression of the general transcription factor OsTFIIB5 alters rice development and seed quality.","authors":"Shivam Sharma, Ankita Prusty, Prasant Kumar Dansana, Sanjay Kapoor, Akhilesh Kumar Tyagi","doi":"10.1007/s00299-025-03423-y","DOIUrl":"https://doi.org/10.1007/s00299-025-03423-y","url":null,"abstract":"<p><strong>Key message: </strong>Overexpression of general transcription factor OsTFIIB5 in rice affects seedling growth, plant height, flowering time, panicle architecture, and seed protein/starch levels and involves modulation of expression of associated genes. TFIIB, a key general transcription factor (GTF), plays a critical role in pre-initiation complex (PIC) formation and facilitates RNA polymerase II-mediated transcription. In humans and yeast, TFIIB is encoded by a single gene; however, in plants it is encoded by a multigene family whose products may perform specialized transcriptional functions. The role of plant TFIIBs, particularly in monocots, remains largely unexplored. This study presents the first functional characterization of the rice TFIIB gene, OsTFIIB5 (LOC_Os09g36440), during development. Expression profiling of OsTFIIB5 revealed differential patterns across various developmental stages, with pronounced transcript accumulation during seed development. Overexpression of OsTFIIB5 impacted multiple stages of plant growth and development, leading to phenotypic changes such as altered seedling growth, reduced plant height, early heading, altered panicle architecture, decreased yield, and changes in seed storage substances. Notably, there were no effects on seed germination, pollen development, and grain size. Reduction in shoot length and plant height was linked to altered expression of genes involved in gibberellin (GA) biosynthesis, signalling, and deactivation. Overexpression of OsTFIIB5 enhanced the expression of genes involved in the photoperiodic flowering pathway, resulting in early panicle emergence. Higher expression levels of OsTFIIB5 also induced the accumulation of seed storage proteins (SSPs), while reducing starch content and altering the proportions of amylose and amylopectin in seeds. These findings suggest that OsTFIIB5 functions as a transcriptional regulator, governing multiple aspects of rice growth and development.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 2","pages":"27"},"PeriodicalIF":5.3,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142966338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samar G Thabet, Fatmah Ahmed Safhi, Andreas Börner, Ahmad M Alqudah
{"title":"Genetic associations determine the effects of intergenerational and transgenerational stress memory for salinity exposure histories in barley.","authors":"Samar G Thabet, Fatmah Ahmed Safhi, Andreas Börner, Ahmad M Alqudah","doi":"10.1007/s00299-024-03404-7","DOIUrl":"10.1007/s00299-024-03404-7","url":null,"abstract":"<p><strong>Key message: </strong>Enhancing salt tolerance genetically through defining the genetic and physiological mechanisms intergenerational and transgenerational stress memory that contributes to sustainable agriculture by reducing the reliance on external inputs such as irrigation and improving the adaptability of barley to changing climate conditions. Salinity stress poses a substantial challenge to barley production worldwide, adversely affecting crop yield, quality, and agricultural sustainability. To address this, the present study utilized a genome-wide association san (GWAS) to identify genetic associations underlying intergenerational and transgenerational stress memory in response to salinity in a diverse panel of 138 barley accessions. We compared seeds from a second-generation group without salinity exposure (C1C2) to seeds from groups that experienced single-generation salt stress two generations ago (S1C2; transgenerational memory) or one generation ago (C1S2; intergenerational memory), as well as seeds from a group exposed to salinity across both generations (S1S2; combined memory effects). Our results revealed that historical salt stress, irrespective of the number of prior generations affected, induced significant changes in traits such as spike length, spikelets per spike, grains per spike, grain weight, thousand-kernel weight, and markedly increment in antioxidant components levels of enzymatic and non-enzymatic antioxidants. These findings indicate that prior exposure to salinity leaves lasting physiological and biochemical effects that enhance the plant's ability to respond to subsequent stress. Notably, the GWAS analysis identified highly significant genetic associations and candidate genes such as HORVU.MOREX.r3.4HG0383450 linked to most of these traits under salinity exposure histories. In conclusion, intergenerational and transgenerational stress memory plays a pivotal role in enhancing barley's salt tolerance, offering valuable insights for breeding programs aimed at developing resilient barley cultivars.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 1","pages":"25"},"PeriodicalIF":5.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yefei Li, Hong Chen, Xinping Kong, Yuying Yin, Ji Li, Kunlin Wu, Songjun Zeng, Lin Fang
{"title":"Excessive accumulation of auxin inhibits protocorm development during germination of Paphiopedilum spicerianum.","authors":"Yefei Li, Hong Chen, Xinping Kong, Yuying Yin, Ji Li, Kunlin Wu, Songjun Zeng, Lin Fang","doi":"10.1007/s00299-024-03419-0","DOIUrl":"https://doi.org/10.1007/s00299-024-03419-0","url":null,"abstract":"<p><strong>Key message: </strong>Excessive auxin accumulation inhibits protocorm development during germination of Paphiopedilum spicerianum, delaying shoot meristem formation by downregulating boundary genes (CUC1, CUC2, CLV3) and promoting fungal colonization, essential for seedling establishment. Paphiopedilum, possess high horticultural and conservational value. Asymbiotic germination is a common propagation method, but high rates of protocorm developmental arrest hinder seedling establishment. Our study found that the key difference between normally developing protocorm (NDP) and arrested developmental protocorm (ADP) is their capability for continuous cell differentiation. In ADP, cells divide without differentiating, with indole-3-acetic acid (IAA) levels being 20 times higher than that in NDP. This suggests that auxin level plays a role in protocorm cell fate determination. Exogenous application of NAA demonstrated that elevated auxin level can delay the formation of the shoot apical meristem (SAM) inside the protocorm. Gene expression analysis revealed that elevated auxin can inhibit or even halt the SAM formation through down-regulation of SAM-related genes such as CLV3, CUC1 and CUC2. High auxin levels also led to reduced cell wall rigidity by up-regulation of cell wall expanding protein (EXPB15), thereby creating ideal conditions for fungi entry. Inoculation with a compatible orchid mycorrhizal fungus (OMF) resulted in successful cell differentiation of ADP and eventually triggered the conversion of ADP to NDP. Since the protocorm is a distinct structure that facilitates the establishment of symbiotic associations with compatible OMF, we propose that the excessive auxin accumulation inside Paphiopedilum protocorm can pause the further development of protocorm and soften the cell wall. This strategy likely serves to enhance the attraction and colonization by OMFs in the native habitat of Paphiopedilum, facilitating essential symbiotic relationships necessary for their survival and growth.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 1","pages":"23"},"PeriodicalIF":5.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing virus-mediated genome editing for cultivated tomato through low temperature.","authors":"Ga Hui Kang, Yujung Ko, Je Min Lee","doi":"10.1007/s00299-024-03392-8","DOIUrl":"https://doi.org/10.1007/s00299-024-03392-8","url":null,"abstract":"<p><strong>Key message: </strong>Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding. In this study, we highly improved virus-induced genome-editing (VIGE) system for cultivated tomato. Vectors of tobacco rattle virus (TRV) and potato virus X (PVX) were used to deliver sgRNA targeting phytoene desaturase (SlPDS), along with mobile RNA sequences of tFT or tRNA<sup>Ileu</sup>, into Cas9-overexpressing cultivated tomato (S. lycopersicum cv. Moneymaker). Our results demonstrate that low temperature significantly enhanced viral vector-mediated gene editing efficiency in both cotyledons and systemic upper leaves. However, no mutant progeny was obtained from TRV- and PVX301-infected MM-Cas9 plants. To address this challenge, we employed tissue culture techniques and found that low-temperature incubations at the initiation stage of tissue culture lead to enhanced editing efficiency in both vectors, resulting in a higher mutation rate (> 70%) of SlPDS in regenerated plants. Heritable gene-edited and virus-free progenies were successfully identified. This study presents a straightforward approach to enhance VIGE efficiency and the expeditious production of gene-edited lines in tomato breeding.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 1","pages":"22"},"PeriodicalIF":5.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}