Physics in medicine and biology最新文献

筛选
英文 中文
Study on the impact of bowtie filter on photon-counting CT imaging. 弓形滤波器对光子计数 CT 成像影响的研究
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-28 DOI: 10.1088/1361-6560/ad8858
Xin Zhang, Jixiong Xie, Ting Su, Jiongtao Zhu, Dongmei Xia, Hairong Zheng, Dong Liang, Yongshuai Ge
{"title":"Study on the impact of bowtie filter on photon-counting CT imaging.","authors":"Xin Zhang, Jixiong Xie, Ting Su, Jiongtao Zhu, Dongmei Xia, Hairong Zheng, Dong Liang, Yongshuai Ge","doi":"10.1088/1361-6560/ad8858","DOIUrl":"10.1088/1361-6560/ad8858","url":null,"abstract":"<p><p><i>Objective.</i>The aim of this study was to investigate the impact of the bowtie filter on the image quality of the photon-counting detector (PCD) based CT imaging.<i>Approach.</i>Numerical simulations were conducted to investigate the impact of bowtie filters on image uniformity using two water phantoms, with tube potentials ranging from 60 to 140 kVp with a step of 5 kVp. Subsequently, benchtop PCD-CT imaging experiments were performed to verify the observations from the numerical simulations. Additionally, various correction methods were validated through these experiments.<i>Main results.</i>It was found that the use of a bowtie filter significantly alters the uniformity of PCD-CT images, depending on the size of the object and the x-ray spectrum. Two notable effects were observed: the capping effect and the flattening effect. Furthermore, it was demonstrated that the conventional beam hardening correction method could effectively mitigate such non-uniformity in PCD-CT images, provided that dedicated calibration parameters were used.<i>Significance.</i>It was demonstrated that the incorporation of a bowtie filter results in varied image artifacts in PCD-CT imaging under different conditions. Certain image correction methods can effectively mitigate and reduce these artifacts, thereby enhancing the overall quality of PCD-CT images.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing suitability and stability of materials for a head and neck anthropomorphic multimodality (MRI/CT) phantoms for radiotherapy. 评估用于放射治疗的头颈部拟人多模态(MRI/CT)模型材料的适用性和稳定性。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-28 DOI: 10.1088/1361-6560/ad8830
Meshal Alzahrani, David A Broadbent, Irvin Teh, Bashar Al-Qaisieh, Richard Speight
{"title":"Assessing suitability and stability of materials for a head and neck anthropomorphic multimodality (MRI/CT) phantoms for radiotherapy.","authors":"Meshal Alzahrani, David A Broadbent, Irvin Teh, Bashar Al-Qaisieh, Richard Speight","doi":"10.1088/1361-6560/ad8830","DOIUrl":"10.1088/1361-6560/ad8830","url":null,"abstract":"<p><p><i>Objective:</i>This study aims to identify and evaluate suitable and stable materials for developing a head and neck anthropomorphic multimodality phantom for radiotherapy purposes. These materials must mimic human head and neck tissues in both computed tomography (CT) and magnetic resonance imaging (MRI) and maintain stable imaging properties over time and after radiation exposure, including the high levels associated with linear accelerator (linac) use.<i>Approach:</i>Various materials were assessed by measuring their CT numbers and T1 and T2 relaxation times. These measurements were compared to literature values to determine how closely the properties of the candidate materials resemble those of human tissues in the head and neck region. The stability of these properties was evaluated monthly over a year and after radiation exposure to doses up to 1000 Gy. Statistical analyzes were conducted to identify any significant changes over time and after radiation exposure.<i>Main results:</i>10% and 12.6% Polyvinyl alcohol cryogel (PVA-c) both exhibited T1 and T2 relaxation times and CT numbers within the range appropriate for brain grey matter. 14.3% PVA-c and some plastic-based materials matched the MRI properties of brain white matter, with CT numbers close to the clinical range. Additionally, some plastic-based materials showed T1 and T2 relaxation times consistent with MRI properties of fat, although their CT numbers were not suitable. Over time and after irradiation, 10% PVA-c maintained consistent properties for brain grey matter. 12.6% PVA-c's T1 relaxation time decreased beyond the range after the first month.<i>Significance:</i>This study identified 10% PVA-c as a substitute for brain grey matter, demonstrating stable imaging properties over a year and after radiation exposure up to 1000 Gy. However, the results highlight a need for further research to find additional materials to accurately simulate a wider range of human tissues.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Initial results of the Hyperion IIDPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. 应用于新西兰白兔动脉粥样硬化斑块成像的同步 PET-MRI Hyperion IIDPET 插件的初步结果。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-28 DOI: 10.1088/1361-6560/ad8c1f
Pierre Gebhardt, Begona Lavin, Alkystis Phinikaridou, Jane E Mackewn, Markus Henningsson, David Schug, Andre Salomon, Paul K Marsden, Volkmar Schulz, René Botnar
{"title":"Initial results of the Hyperion II<sup>D</sup>PET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits.","authors":"Pierre Gebhardt, Begona Lavin, Alkystis Phinikaridou, Jane E Mackewn, Markus Henningsson, David Schug, Andre Salomon, Paul K Marsden, Volkmar Schulz, René Botnar","doi":"10.1088/1361-6560/ad8c1f","DOIUrl":"https://doi.org/10.1088/1361-6560/ad8c1f","url":null,"abstract":"<p><strong>Objective: </strong>In preclinical research, in vivo imaging of mice and rats is more&#xD;common than any other animal species, since their physiopathology is very well-&#xD;known and many genetically altered disease models exist. Animal studies based on&#xD;small rodents are usually performed using dedicated preclinical imaging systems&#xD;with high spatial resolution. For studies that require animal models such as mini-&#xD;pigs or New-Zealand White (NZW) rabbits, imaging systems with larger bore&#xD;sizes are required. In case of hybrid imaging using Positron Emission Tomography&#xD;(PET) and Magnetic Resonance Imaging (MRI), clinical systems have to be used,&#xD;as these animal models do not typically fi t in preclinical simultaneous PET-MRI&#xD;scanners.&#xD;Approach. In this paper, we present initial imaging results obtained with the&#xD;Hyperion IID PET insert which can accommodate NZW rabbits when combined&#xD;with a large volume MRI RF coil. First, we developed a rabbit-sized image&#xD;quality phantom of comparable size to a NZW rabbit in order to evaluate the&#xD;PET imaging performance of the insert under high count rates. For this phantom,&#xD;radioactive spheres with inner diameters between 3.95 and 7.86 mm were visible&#xD;in a warm background with a tracer activity ratio of 4.1 to 1 and with a total&#xD;18-F activity in the phantom of 58MBq at measurement start. Second, we performed&#xD;simultaneous PET-MR imaging of atherosclerotic plaques in a rabbit in vivo using&#xD;a single injection containing 18-F-FDG for detection of infl ammatory activity,&#xD;and Gd-ESMA for visualization of the aortic vessel wall and plaques with MRI.&#xD;Main results. The fused PET-MR images reveal 18-F-FDG uptake within an&#xD;active plaques with plaque thicknesses in the sub-millimeter range. Histology&#xD;showed colocalization of 18-F-FDG uptake with macrophages in the aortic vessel wall lesions. &#xD;Significance. Our initial results demonstrate that this PET insert&#xD;is a promising system for simultaneous high-resolution PET-MR atherosclerotic&#xD;plaque imaging studies in NZW rabbits.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimisation of cone beam CT radiotherapy imaging protocols using a novel 3D printed head and neck anthropomorphic phantom. 使用新型 3D 打印头颈部拟人模型优化锥形束 CT 放射治疗成像方案。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-28 DOI: 10.1088/1361-6560/ad88d2
Meshal Alzahrani, Christopher O'Hara, David Bird, Jack P C Baldwin, Mitchell Naisbit, Irvin Teh, David A Broadbent, Bashar Al-Qaisieh, Emily Johnstone, Richard Speight
{"title":"Optimisation of cone beam CT radiotherapy imaging protocols using a novel 3D printed head and neck anthropomorphic phantom.","authors":"Meshal Alzahrani, Christopher O'Hara, David Bird, Jack P C Baldwin, Mitchell Naisbit, Irvin Teh, David A Broadbent, Bashar Al-Qaisieh, Emily Johnstone, Richard Speight","doi":"10.1088/1361-6560/ad88d2","DOIUrl":"10.1088/1361-6560/ad88d2","url":null,"abstract":"<p><p><i>Objective.</i>This study aimed to optimise Cone Beam Computed Tomography (CBCT) protocols for head and neck (H&N) radiotherapy treatments using a 3D printed anthropomorphic phantom. It focused on precise patient positioning in conventional treatment and adaptive radiotherapy (ART).<i>Approach.</i>Ten CBCT protocols were evaluated with the 3D-printed H&N anthropomorphic phantom, including one baseline protocol currently used at our centre and nine new protocols. Adjustments were made to milliamperage and exposure time to explore their impact on radiation dose and image quality. Additionally, the effect on image quality of varying the scatter correction parameter for each of the protocols was assessed. Each protocol was compared against a reference CT scan. Usability was assessed by three Clinical Scientists using a Likert scale, and statistical validation was performed on the findings.<i>Main results</i>. The work revealed variability in the effectiveness of protocols. Protocols optimised for lower radiation exposure maintained sufficient image quality for patient setup in a conventional radiotherapy pathway, suggesting the potential for reducing patient radiation dose by over 50% without compromising efficacy. Optimising ART protocols involves balancing accuracy across brain, bone, and soft tissue, as no single protocol or scatter correction parameter achieves optimal results for all simultaneously.<i>Significance.</i>This study underscores the importance of optimising CBCT protocols in H&N radiotherapy. Our findings highlight the potential to maintain the usability of CBCT for bony registration in patient setup while significantly reducing the radiation dose, emphasizing the significance of optimising imaging protocols for the task in hand (registering to soft tissue or bone) and aligning with the as low as reasonably achievable principle. More studies are needed to assess these protocols for ART, including CBCT dose measurements and CT comparisons. Furthermore, the novel 3D printed anthropomorphic phantom demonstrated to be a useful tool when optimising CBCT protocols.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning-based automatic contour quality assurance for auto-segmented abdominal MR-Linac contours. 基于深度学习的自动轮廓质量保证,用于自动分割腹部 MR-Linac 轮廓。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-25 DOI: 10.1088/1361-6560/ad87a6
Mohammad Zarenia, Ying Zhang, Christina Sarosiek, Renae Conlin, Asma Amjad, Eric Paulson
{"title":"Deep learning-based automatic contour quality assurance for auto-segmented abdominal MR-Linac contours.","authors":"Mohammad Zarenia, Ying Zhang, Christina Sarosiek, Renae Conlin, Asma Amjad, Eric Paulson","doi":"10.1088/1361-6560/ad87a6","DOIUrl":"10.1088/1361-6560/ad87a6","url":null,"abstract":"<p><p><i>Objective.</i>Deep-learning auto-segmentation (DLAS) aims to streamline contouring in clinical settings. Nevertheless, achieving clinical acceptance of DLAS remains a hurdle in abdominal MRI, hindering the implementation of efficient clinical workflows for MR-guided online adaptive radiotherapy (MRgOART). Integrating automated contour quality assurance (ACQA) with automatic contour correction (ACC) techniques could optimize the performance of ACC by concentrating on inaccurate contours. Furthermore, ACQA can facilitate the contour selection process from various DLAS tools and/or deformable contour propagation from a prior treatment session. Here, we present the performance of novel DL-based 3D ACQA models for evaluating DLAS contours acquired during MRgOART.<i>Approach.</i>The ACQA model, based on a 3D convolutional neural network (CNN), was trained using pancreas and duodenum contours obtained from a research DLAS tool on abdominal MRIs acquired from a 1.5 T MR-Linac. The training dataset contained abdominal MR images, DL contours, and their corresponding quality ratings, from 103 datasets. The quality of DLAS contours was determined using an in-house contour classification tool, which categorizes contours as acceptable or edit-required based on the expected editing effort. The performance of the 3D ACQA model was evaluated using an independent dataset of 34 abdominal MRIs, utilizing confusion matrices for true and predicted classes.<i>Main results.</i>The ACQA predicted 'acceptable' and 'edit-required' contours at 72.2% (91/126) and 83.6% (726/868) accuracy for pancreas, and at 71.2% (79/111) and 89.6% (772/862) for duodenum contours, respectively. The model successfully identified false positive (extra) and false negative (missing) DLAS contours at 93.75% (15/16) and %99.7 (438/439) accuracy for pancreas, and at 95% (57/60) and 98.9% (91/99) for duodenum, respectively.<i>Significance.</i>We developed 3D-ACQA models capable of quickly evaluating the quality of DLAS pancreas and duodenum contours on abdominal MRI. These models can be integrated into clinical workflow, facilitating efficient and consistent contour evaluation process in MRgOART for abdominal malignancies.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First test beam of the DMAPS-based proton tracker at the pMBRT facility at the Curie Institute. 居里研究所 pMBRT 设备上基于 DMAPS 的质子跟踪器的第一束试验光束。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-25 DOI: 10.1088/1361-6560/ad84b3
M Granado-González, T Price, L Gonella, K Moustakas, T Hirono, T Hemperek, L De Marzi, A Patriarca
{"title":"First test beam of the DMAPS-based proton tracker at the pMBRT facility at the Curie Institute.","authors":"M Granado-González, T Price, L Gonella, K Moustakas, T Hirono, T Hemperek, L De Marzi, A Patriarca","doi":"10.1088/1361-6560/ad84b3","DOIUrl":"10.1088/1361-6560/ad84b3","url":null,"abstract":"<p><p><i>Objective.</i>Proton radiotherapy's efficacy relies on an accurate relative stopping power (RSP) map of the patient to optimise the treatment plan and minimize uncertainties. Currently, a conversion of a Hounsfield Units map obtained by a common x-ray computed tomography (CT) is used to compute the RSP. This conversion is one of the main limiting factors for proton radiotherapy. To bypass this conversion a direct RSP map could be obtained by performing a proton CT (pCT). The focal point of this article is to present a proof of concept of the potential of fast pixel technologies for proton tracking at clinical facilities.<i>Approach.</i>A two-layer tracker based on the TJ-Monopix1, a depleted monolithic active pixel sensor (DMAPS) chip initially designed for the ATLAS, was tested at the proton minibeam radiotherapy beamline at the Curie Institute. The chips were subjected to 100 MeV protons passing through the single slit collimator (0.4×20mm<sup>2</sup>) with fluxes up to1.3×107p s<sup>-1</sup> cm<sup>-2</sup>. The performance of the proton tracker was evaluated with GEANT4 simulations.<i>Main results.</i>The beam profile and dispersion in air were characterized by an opening of 0.031 mm cm<sup>-1</sup>, and aσx=0.172mm at the position of the slit. The results of the proton tracking show how the TJ-Monopix1 chip can effectively track protons in a clinical environment, achieving a tracking purity close to 70%, and a position resolution below 0.5 mm; confirming the chip's ability to handle high proton fluxes with a competitive performance.<i>Significance.</i>This work suggests that DMAPS technologies can be a cost-effective alternative for proton imaging. Additionally, the study identifies areas where further optimization of chip design is required to fully leverage these technologies for clinical ion imaging applications.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proton ARC based LATTICE radiation therapy: feasibility study, energy layer optimization and LET optimization. 基于质子 ARC 的 LATTICE 放射治疗:可行性研究、能量层优化和 LET 优化。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-25 DOI: 10.1088/1361-6560/ad8855
Ya-Nan Zhu, Weijie Zhang, Jufri Setianegara, Yuting Lin, Erik Traneus, Yong Long, Xiaoqun Zhang, Rajeev Badkul, David Akhavan, Fen Wang, Ronald C Chen, Hao Gao
{"title":"Proton ARC based LATTICE radiation therapy: feasibility study, energy layer optimization and LET optimization.","authors":"Ya-Nan Zhu, Weijie Zhang, Jufri Setianegara, Yuting Lin, Erik Traneus, Yong Long, Xiaoqun Zhang, Rajeev Badkul, David Akhavan, Fen Wang, Ronald C Chen, Hao Gao","doi":"10.1088/1361-6560/ad8855","DOIUrl":"10.1088/1361-6560/ad8855","url":null,"abstract":"&lt;p&gt;&lt;p&gt;&lt;i&gt;Objective.&lt;/i&gt;LATTICE, a spatially fractionated radiation therapy (SFRT) modality, is a 3D generalization of GRID and delivers highly modulated peak-valley spatial dose distribution to tumor targets, characterized by peak-to-valley dose ratio (PVDR). Proton LATTICE is highly desirable, because of the potential synergy of the benefit from protons compared to photons, and the benefit from LATTICE compared to GRID. Proton LATTICE using standard proton RT via intensity modulated proton therapy (IMPT) (with a few beam angles) can be problematic with poor target dose coverage and high dose spill to organs-at-risk (OAR). This work will develop novel proton LATTICE method via proton ARC (with many beam angles) to overcome these challenges in target coverage and OAR sparing, with optimized delivery efficiency via energy layer optimization and optimized biological dose distribution via linear energy transfer (LET) optimization, to enable the clinical use of proton LATTICE.&lt;i&gt;Approach.&lt;/i&gt;ARC based proton LATTICE is formulated and solved with energy layer optimization, during which plan quality and delivery efficiency are jointly optimized. In particular, the number of energy jumps (NEJ) is explicitly modelled and minimized during plan optimization for improving delivery efficiency, while target dose conformality and OAR dose objectives are optimized. The plan deliverability is ensured by considering the minimum-monitor-unit (MMU) constraint, and the plan robustness is accounted for using robust optimization. The biological dose is optimized via LET optimization. The optimization solution algorithm utilizes iterative convex relaxation method to handle the dose-volume constraint and the MMU constraint, with spot-weight optimization subproblems solved by proximal descent method.&lt;i&gt;Main results.&lt;/i&gt;ARC based proton LATTCE substantially improved plan quality from IMPT based proton LATTICE, such as (1) improved conformity index (CI) from 0.47 to 0.81 for the valley target dose and from 0.62 to 0.97 for the peak target dose, (2) reduced esophagus dose from 0.68 Gy to 0.44 Gy (a 12% reduction with respect to 2 Gy valley prescription dose) and (3) improved PVDR from 4.15 to 4.28 in the lung case. Moreover, energy layer optimization improved plan delivery efficiency for ARC based proton LATTICE, such as (1) reduced NEJ from 71 to 56 and (2) reduction of energy layer switching time by 65% and plan delivery time by 52% in the lung case. The biological target and OAR dose distributions were further enhanced via LET optimization. On the other hand, proton ARC LATTCE also substantially improved plan quality from VMAT LATTICE, such as (1) improved CI from 0.45 to 0.81 for the valley target dose and from 0.63 to 0.97 for the peak target dose, (2) reduced esophagus dose from 0.59 Gy to 0.38 Gy (a 10.5% reduction with respect to 2 Gy valley prescription dose) and (3) improved PVDR from 3.88 to 4.28 in the lung case.&lt;i&gt;Significance.&lt;/i&gt;The feasibility of high-plan-qu","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the oxygen effect in DNA strand break induced by gamma-rays with TOPAS-nBio. 利用 TOPAS-nBio 对伽马射线诱导的 DNA 链断裂中的氧效应进行建模。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-25 DOI: 10.1088/1361-6560/ad87a7
Naoki D-Kondo, Thongchai A M Masilela, Wook-Geun Shin, Bruce Faddegon, Jay LaVerne, Jan Schuemann, Jose Ramos-Mendez
{"title":"Modeling the oxygen effect in DNA strand break induced by gamma-rays with TOPAS-nBio.","authors":"Naoki D-Kondo, Thongchai A M Masilela, Wook-Geun Shin, Bruce Faddegon, Jay LaVerne, Jan Schuemann, Jose Ramos-Mendez","doi":"10.1088/1361-6560/ad87a7","DOIUrl":"10.1088/1361-6560/ad87a7","url":null,"abstract":"<p><p><i>Objective.</i>To present and validate a method to simulate from first principles the effect of oxygen on radiation-induced double-strand breaks (DSBs) using the Monte Carlo Track-structure code TOPAS-nBio.<i>Approach.</i>Two chemical models based on the oxygen fixation hypothesis (OFH) were developed in TOPAS-nBio by considering an oxygen adduct state of DNA and creating a competition kinetic mechanism between oxygen and the radioprotective molecule WR-1065. We named these models 'simple' and 'detailed' due to the way they handle the hydrogen abstraction pathways. We used the simple model to obtain additional information for the •OH-DNA hydrogen abstraction pathway probability for the detailed model. These models were calibrated and compared with published experimental data of linear and supercoiling fractions obtained with R6K plasmids, suspended in dioxane as a hydroxyl scavenger, and irradiated with<sup>137</sup>Cs gamma-rays. The reaction rates for WR-1065 and O<sub>2</sub>with DNA were taken from experimental works. Single-Strand Breaks (SSBs) and DSBs as a function of the dose for a range of oxygen concentrations [O<sub>2</sub>] (0.021%-21%) were obtained. Finally, the hypoxia reduction factor (HRF) was obtained from DSBs.<i>Main Results.</i>Validation results followed the trend of the experimental within 12% for the supercoiled and linear plasmid fractions for both models. The HRF agreed with measurements obtained with<sup>137</sup>Cs and 200-280 kVp x-ray within experimental uncertainties. However, the HRF at an oxygen concentration of 2.1% overestimated experimental results by a factor of 1.7 ± 0.1. Increasing the concentration of WR-1065 from 1 mM to 10-100 mM resulted in a HRF difference of 0.01, within the 8% statistical uncertainty between TOPAS-nBio and experimental data. This highlights the possibility of using these chemical models to recreate experimental HRF results.<i>Significance.</i>Results support the OFH as a leading cause of oxygen radio-sensitization effects given a competition between oxygen and chemical DNA repair molecules like WR-1065.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpretable diagnosis of breast lesions in ultrasound imaging using deep multi-stage reasoning. 利用深度多阶段推理对超声波成像中的乳腺病变进行可解释性诊断。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-24 DOI: 10.1088/1361-6560/ad869f
Kaixuan Cui, Weiyong Liu, Dongyue Wang
{"title":"Interpretable diagnosis of breast lesions in ultrasound imaging using deep multi-stage reasoning.","authors":"Kaixuan Cui, Weiyong Liu, Dongyue Wang","doi":"10.1088/1361-6560/ad869f","DOIUrl":"10.1088/1361-6560/ad869f","url":null,"abstract":"<p><p><i>Objective.</i>Ultrasound is the primary screening test for breast cancer. However, providing an interpretable auxiliary diagnosis of breast lesions is a challenging task. This study aims to develop an interpretable auxiliary diagnostic method to enhance usability in human-machine collaborative diagnosis.<i>Approach.</i>To address this issue, this study proposes the deep multi-stage reasoning method (DMSRM), which provides individual and overall breast imaging-reporting and data system (BI-RADS) assessment categories for breast lesions. In the first stage of the DMSRM, the individual BI-RADS assessment network (IBRANet) is designed to capture lesion features from breast ultrasound images. IBRANet performs individual BI-RADS assessments of breast lesions using ultrasound images, focusing on specific features such as margin, contour, echogenicity, calcification, and vascularity. In the second stage, evidence reasoning (ER) is employed to achieve uncertain information fusion and reach an overall BI-RADS assessment of the breast lesions.<i>Main results.</i>To evaluate the performance of DMSRM at each stage, two test sets are utilized: the first for individual BI-RADS assessment, containing 4322 ultrasound images; the second for overall BI-RADS assessment, containing 175 sets of ultrasound image pairs. In the individual BI-RADS assessment of margin, contour, echogenicity, calcification, and vascularity, IBRANet achieves accuracies of 0.9491, 0.9466, 0.9293, 0.9234, and 0.9625, respectively. In the overall BI-RADS assessment of lesions, the ER achieves an accuracy of 0.8502. Compared to independent diagnosis, the human-machine collaborative diagnosis results of three radiologists show increases in positive predictive value by 0.0158, 0.0427, and 0.0401, in sensitivity by 0.0400, 0.0600 and 0.0434, and in area under the curve by 0.0344, 0.0468, and 0.0255.<i>Significance.</i>This study proposes a DMSRM that enhances the transparency of the diagnostic reasoning process. Results indicate that DMSRM exhibits robust BI-RADS assessment capabilities and provides an interpretable reasoning process that better suits clinical needs.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dosimetric accuracy of a commercial model-based dose calculation algorithm in modeling a six-groove direction modulated brachytherapy tandem applicator. 基于模型的商业剂量计算算法在模拟六槽方向调制近距离治疗串联涂抹器时的剂量测定精度。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-23 DOI: 10.1088/1361-6560/ad84b6
Moeen Meftahi, William Y Song
{"title":"The dosimetric accuracy of a commercial model-based dose calculation algorithm in modeling a six-groove direction modulated brachytherapy tandem applicator.","authors":"Moeen Meftahi, William Y Song","doi":"10.1088/1361-6560/ad84b6","DOIUrl":"10.1088/1361-6560/ad84b6","url":null,"abstract":"<p><p><i>Objective.</i>With advancements in high-dose rate brachytherapy, the clinical translation of intensity modulated brachytherapy (IMBT) innovations necessitates utilization of model-based dose calculation algorithms (MBDCA) for accurate and rapid dose calculations. This study uniquely benchmarks a commercial MBDCA, BrachyVision ACUROS<sup>TM</sup>(BVA), against Monte Carlo (MC) simulations, evaluating dose distributions for a novel IMBT applicator, termed as the<i>six-groove</i>Direction Modulated Brachytherapy (DMBT) tandem, expanding beyond previous focus on partially shielded vaginal cylinder applicators, through a novel methodology.<i>Approach.</i>The DMBT tandem applicator, made of a tungsten alloy with six evenly spaced grooves, was simulated using the GEANT4 MC code. Subsequently, two main scenarios were created using the BVA and reproduced by the MC simulations: '<i>Source at the Center of the Water Phantom (SACWP)</i>' and '<i>Source at the Middle of the Applicator (SAMA)</i>' for three cubical virtual water phantoms (20 cm)<sup>3</sup>, (30 cm)<sup>3</sup>, and (40 cm)<sup>3</sup>. A track length estimator was utilized for dose calculation and 2D/3D scoring were performed. The difference in isodose surfaces/lines (i.e. coverage) at each voxel,<i>ΔD</i><sub>Isodose Levels/Lines</sub>, was thus calculated for relevant normalization points (<i>r</i><sub>ref</sub>).<i>Results.</i>The coverage was comparable, based on 2D scoring, between the BVA and MC isodose surfaces/lines for the region of clinical relevance, (i.e. within 5 cm radius from the source) with<i>ΔD</i><sub>Isodose Lines</sub>(<i>r</i><sub>ref</sub>: 1 cm from the source) falling within 2% for the two scenarios for all phantom sizes. For the phantom (20 cm)<sup>3</sup>,<i>ΔD</i><sub>Isodose Levels</sub>(3D scoring) recorded the range [-3.0% +6.5%] ([-7.4% +7.3%]) for 95% of the voxels of the same scoring volume for the SACWP (SAMA) scenario.<i>Significance.</i>The results indicated that the BVA could render comparable coverage as compared to the MC simulations in the region of clinical relevance for different phantom sizes.<i>ΔD</i><sub>Isodose Lines</sub>may offer an advantageous metric for evaluation of MBDCAs in clinical setting.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信