Physics in medicine and biology最新文献

筛选
英文 中文
IPEM topical report: the first UK survey of cone beam CT dose indices in radiotherapy verification imaging for adult patients. IPEM 专题报告:英国首次对成年患者放疗验证成像中锥束 CT 剂量指数的调查。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-11-06 DOI: 10.1088/1361-6560/ad88d1
Tim J Wood, Anne T Davis, James Earley, Sue Edyvean, Una Findlay, Rebecca Lindsay, Rosaleen Plaistow, Matthew Williams
{"title":"IPEM topical report: the first UK survey of cone beam CT dose indices in radiotherapy verification imaging for adult patients.","authors":"Tim J Wood, Anne T Davis, James Earley, Sue Edyvean, Una Findlay, Rebecca Lindsay, Rosaleen Plaistow, Matthew Williams","doi":"10.1088/1361-6560/ad88d1","DOIUrl":"10.1088/1361-6560/ad88d1","url":null,"abstract":"<p><p>Cone beam CT is integral to most modern radiotherapy treatments. The application of daily and repeat CBCT imaging can lead to high imaging doses over a large volume of tissue that extends beyond the treatment site. Hence, it is important to ensure exposures are optimised to keep doses as low as reasonably achievable, whilst ensuring images are suitable for the clinical task. This IPEM topical report presents the results of the first UK survey of dose indices in radiotherapy CBCT. Dose measurements, as defined by the cone beam dose index (CBDI<sub>w</sub>), were collected along with protocol information for seven treatment sites. Where a range of optimised protocols were available in a centre, a sample of patient data demonstrating the variation in protocol use were requested. Protocol CBDI<sub>w</sub>values were determined from the average dosimetry data for each type of linear accelerator, and median CBDI<sub>w</sub>and scan length were calculated for each treatment site at each centre. Median CBDI<sub>w</sub>values were compared and summary statistics derived that enable the setting of national dose reference levels (DRLs). A total of 63 UK radiotherapy centres contributed data. The proposed CBDI<sub>w</sub>DRLs are; prostate 20.6 mGy, gynaecological 20.8 mGy, breast 5.0 mGy, 3D-lung 6.0 mGy, 4D-lung 11.8 mGy, brain 3.5 mGy and head/neck 4.2 mGy. However, large differences between models of imaging system were noted. Where centres had pro-active optimisation strategies in place, such as sized based protocols with selection criteria, dose reductions on the 'average' patient were possible compared with vendor defaults. Optimisation of scan length was noted in some clinical sites, with Elekta users tending to fit different collimators for prostate imaging (relatively short) compared with gynaecological treatments (longest). This contrasts with most Varian users who apply the default scan length in most cases.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhomogeneity detection within a head-sized phantom using tracking of charged nuclear fragments in ion beam therapy. 利用离子束疗法中的带电核碎片跟踪技术检测头部大小的模型内的不均匀性。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-11-06 DOI: 10.1088/1361-6560/ad8870
Renato Félix-Bautista, Laura Ghesquière-Diérickx, Pamela Ochoa-Parra, Laurent Kelleter, Gernot Echner, Jürgen Debus, Oliver Jäkel, Mária Martišíková, Tim Gehrke
{"title":"Inhomogeneity detection within a head-sized phantom using tracking of charged nuclear fragments in ion beam therapy.","authors":"Renato Félix-Bautista, Laura Ghesquière-Diérickx, Pamela Ochoa-Parra, Laurent Kelleter, Gernot Echner, Jürgen Debus, Oliver Jäkel, Mária Martišíková, Tim Gehrke","doi":"10.1088/1361-6560/ad8870","DOIUrl":"10.1088/1361-6560/ad8870","url":null,"abstract":"<p><p><i>Objective.</i>The highly conformal carbon-ion radiotherapy is associated with an increased sensitivity of the dose distributions to internal changes in the patient during the treatment course. Hence, monitoring methodologies capable of detecting such changes are of vital importance. We established experimental setup conditions to address the sensitivity of a monitoring approach based on secondary-fragment tracking for detecting clinically motivated air cavity dimensions in a homogeneous head-sized PMMA phantom in 40 mm depth.<i>Approach.</i>The air cavities were positioned within the entrance channel of a treatment field of 50 mm diameter at three lateral positions. The measured secondary-fragment emission profiles were compared to a reference measurement without cavities. The experiments were conducted at the Heidelberg Ion-Beam Therapy Center in Germany at typical doses and dose rates.<i>Main results.</i>Significances above a detectability threshold of 2<i>σ</i>for the larger cavities (20 mm diameter and 4 mm thickness, and 20 mm diameter and 2 mm thickness) across the entire treatment field. The smallest cavity of 10 mm diameter and 2 mm thickness, which is on the lower limit of clinical interest, could not be detected at any position. We also demonstrated that it is feasible to reconstruct the lateral position of the cavity on average within 2.8 mm, once the cavity is detected. This is sufficient for the clinicians to estimate medical effects of such a cavity and to decide about the need for a control imaging CT.<i>Significance.</i>This investigation defines well-controlled reference conditions for the evaluation of the performance of any kind of treatment monitoring method and its capability to detect internal changes within head-sized objects. Four air cavities with volumes between 0.31 cm<sup>3</sup>and 1.26 cm<sup>3</sup>were narrowed down around the detectability threshold of this secondary-fragment-based monitoring method.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A framework to model charge sharing and pulse pileup for virtual imaging trials of photon-counting CT. 为光子计数 CT 虚拟成像试验建立电荷共享和脉冲堆积模型的框架。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-11-06 DOI: 10.1088/1361-6560/ad8b0a
Shobhit Sharma, Stevan Vrbaški, Mridul Bhattarai, Ehsan Abadi, Renata Longo, Ehsan Samei
{"title":"A framework to model charge sharing and pulse pileup for virtual imaging trials of photon-counting CT.","authors":"Shobhit Sharma, Stevan Vrbaški, Mridul Bhattarai, Ehsan Abadi, Renata Longo, Ehsan Samei","doi":"10.1088/1361-6560/ad8b0a","DOIUrl":"10.1088/1361-6560/ad8b0a","url":null,"abstract":"<p><p><i>Objective.</i>This study describes the development, validation, and integration of a detector response model that accounts for the combined effects of x-ray crosstalk, charge sharing, and pulse pileup in photon-counting detectors.<i>Approach.</i>The x-ray photon transport was simulated using Geant4, followed by analytical charge sharing simulation in MATLAB. The analytical simulation models charge clouds with Gaussian-distributed charge densities, which are projected on a 3×3 pixel neighborhood of interaction location to compute detected counts. For pulse pileup, a prior analytical method for redistribution of energy-binned counts was implemented for delta pulses. The x-ray photon transport and charge sharing components were validated using experimental data acquired on the CdTe-based Pixirad-1/Pixie-III detector using monoenergetic beams at 26, 33, 37, and 50 keV. The pulse pileup implementation was verified with a comparable Monte Carlo simulation. The model output without pulse pileup was used to generate spatio-energetic response matrices for efficient simulation of scanner-specific photon-counting CT (PCCT) images with DukeSim, with pulse pileup modeled as a post-processing step on simulated projections. For analysis, images for the Gammex multi-energy phantom and the XCAT chest phantom were simulated at 120 kV, both with and without pulse pileup for a range of doses (27-1344 mAs). The XCAT images were evaluated qualitatively at 120 mAs, while images for the Gammex phantom were evaluated quantitatively for all doses using measurements of attenuation coefficients and Calcium concentrations.<i>Main results.</i>Reasonable agreement was observed between simulated and experimental spectra with Mean Absolute Percentage Error Values (MAPE) between 10%and 31%across all incident energies and detector modes. The increased pulse pileup from increased dose affected attenuation coefficients and calcium concentrations, with an effect on calcium quantification as high as MAPE of 28%.<i>Significance.</i>The presented approach demonstrates the viability of the model for enabling VITs to assess and optimize the clinical performance of PCCT.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simulation framework for preclinical proton irradiation workflow. 临床前质子辐照工作流程的模拟框架。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-11-04 DOI: 10.1088/1361-6560/ad897f
Justin Malimban, Felix Ludwig, Danny Lathouwers, Marius Staring, Frank Verhaegen, Sytze Brandenburg
{"title":"A simulation framework for preclinical proton irradiation workflow.","authors":"Justin Malimban, Felix Ludwig, Danny Lathouwers, Marius Staring, Frank Verhaegen, Sytze Brandenburg","doi":"10.1088/1361-6560/ad897f","DOIUrl":"10.1088/1361-6560/ad897f","url":null,"abstract":"<p><p><i>Objective.</i>The integration of proton beamlines with x-ray imaging/irradiation platforms has opened up possibilities for image-guided Bragg peak irradiations in small animals. Such irradiations allow selective targeting of normal tissue substructures and tumours. However, their small size and location pose challenges in designing experiments. This work presents a simulation framework useful for optimizing beamlines, imaging protocols, and design of animal experiments. The usage of the framework is demonstrated, mainly focusing on the imaging part.<i>Approach.</i>The fastCAT toolkit was modified with Monte Carlo (MC)-calculated primary and scatter data of a small animal imager for the simulation of micro-CT scans. The simulated CT of a mini-calibration phantom from fastCAT was validated against a full MC TOPAS CT simulation. A realistic beam model of a preclinical proton facility was obtained from beam transport simulations to create irradiation plans in matRad. Simulated CT images of a digital mouse phantom were generated using single-energy CT (SECT) and dual-energy CT (DECT) protocols and their accuracy in proton stopping power ratio (SPR) estimation and their impact on calculated proton dose distributions in a mouse were evaluated.<i>Main results.</i>The CT numbers from fastCAT agree within 11 HU with TOPAS except for materials at the centre of the phantom. Discrepancies for central inserts are caused by beam hardening issues. The root mean square deviation in the SPR for the best SECT (90 kV/Cu) and DECT (50 kV/Al-90 kV/Al) protocols are 3.7% and 1.0%, respectively. Dose distributions calculated for SECT and DECT datasets revealed range shifts <0.1 mm, gamma pass rates (3%/0.1 mm) greater than 99%, and no substantial dosimetric differences for all structures. The outcomes suggest that SECT is sufficient for proton treatment planning in animals.<i>Significance.</i>The framework is a useful tool for the development of an optimized experimental configuration without using animals and beam time.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-sensitivity and spatial resolution benchtop cone beam XFCT imaging system with pixelated photon counting detectors using enhanced multipixel events correction method. 高灵敏度和空间分辨率台式锥形束 XFCT 成像系统,采用像素化光子计数探测器,使用增强型多像素事件校正方法。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-11-01 DOI: 10.1088/1361-6560/ad8b0b
Shaozhou Pu, Jiadan Song, Hongbing Lu, Wenli Zhang, Liang Li
{"title":"High-sensitivity and spatial resolution benchtop cone beam XFCT imaging system with pixelated photon counting detectors using enhanced multipixel events correction method.","authors":"Shaozhou Pu, Jiadan Song, Hongbing Lu, Wenli Zhang, Liang Li","doi":"10.1088/1361-6560/ad8b0b","DOIUrl":"10.1088/1361-6560/ad8b0b","url":null,"abstract":"<p><p><i>Objective.</i>High atomic number element nanoparticles have shown potential in tumor diagnosis and therapy. X-ray fluorescence computed tomography (XFCT) technology enables quantitative imaging of high atomic number elements by specifically detecting characteristic x-ray signals. The potential for further biomedical applications of XFCT depends on balancing sensitivity, spatial resolution, and imaging speed in existing XFCT imaging systems.<i>Approach.</i>In this study, we utilized a high-energy resolution pixelated photon-counting detector for XFCT imaging. We tackled degradation caused by multi-pixel events in the photon-counting detector through energy and interaction position corrections. Sensitivity and spatial resolution imaging experiments were conducted using PMMA phantoms to validate the effectiveness of the multi-pixel events correction algorithm.<i>Main results.</i>After correction, the system's sensitivity and spatial resolution have both improved. Furthermore, XFCT/CBCT dual-modality imaging of gadolinium nanoparticles within mice subcutaneous tumor was successfully achieved.<i>Significance.</i>These results demonstrate the preclinical research application potential of the XFCT/CBCT dual-modality imaging system in high atomic number nanoparticle-based tumor diagnosis and therapy.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of intra- and inter-fractional motion on target coverage and margins in proton therapy for uveal melanoma. 质子治疗葡萄膜黑色素瘤时,分段内和分段间运动对靶点覆盖和边缘的影响。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-30 DOI: 10.1088/1361-6560/ad8297
Daniel Björkman, Riccardo Via, Antony Lomax, Maria De Prado, Guido Baroni, D C Weber, Jan Hrbacek
{"title":"The effect of intra- and inter-fractional motion on target coverage and margins in proton therapy for uveal melanoma.","authors":"Daniel Björkman, Riccardo Via, Antony Lomax, Maria De Prado, Guido Baroni, D C Weber, Jan Hrbacek","doi":"10.1088/1361-6560/ad8297","DOIUrl":"10.1088/1361-6560/ad8297","url":null,"abstract":"<p><p><i>Introduction.</i>This study aims to assess the effective lateral margin requirements for target coverage in ocular proton therapy (OPT), considering the unique challenges posed by eye motion and hypofractionation. It specifically addresses the previously unaccounted-for uncertainty contribution of intra-fractional motion, in conjunction with setup uncertainties, on dosimetric determination of lateral margin requirements.<i>Method.</i>The methodology integrates dose calculations from the in-house developed treatment planning system OCULARIS with measured intra-fractional motion, patient models from EyePlan and Monte Carlo (MC) sampling of setup uncertainties. The study is conducted on 16 uveal melanoma patients previously treated in the OPTIS2 treatment room at the Paul Scherrer Institute (PSI).<i>Result.</i>The retrospective simulation analysis highlights a significant impact of non-systematic factors on lateral margin requirements in OPT. Simulations indicate that reducing the 2.5 mm clinical lateral margin, represented by a 2.1 mm margin in this work, would have resulted in inadequate target coverage for two patients, revealing a greater impact of non-systematic factors on lateral margin requirements.<i>Conclusions.</i>This work characterizes intra-fractional motion in 16 OPT patients and identifies limitations of clinical margin selection protocols for OPT applications. A novel framework was introduced to assess margin sufficiency for target coverage. The findings suggest that prior research underestimated non-systematic factors and overestimated systematic contributions to lateral margin components. This re-evaluation highlights the critical need to prioritize the management of non-systematic uncertainty contributions in OPT.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on registration method for enface image using multi-feature fusion. 利用多特征融合的人脸图像注册方法研究。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-30 DOI: 10.1088/1361-6560/ad87a5
Lingjiao Pan, Zhongwang Cai, Derong Hu, Weifang Zhu, Fei Shi, Weige Tao, Quanyu Wu, Shuyan Xiao, Xinjian Chen
{"title":"Research on registration method for enface image using multi-feature fusion.","authors":"Lingjiao Pan, Zhongwang Cai, Derong Hu, Weifang Zhu, Fei Shi, Weige Tao, Quanyu Wu, Shuyan Xiao, Xinjian Chen","doi":"10.1088/1361-6560/ad87a5","DOIUrl":"10.1088/1361-6560/ad87a5","url":null,"abstract":"<p><p><i>Objective.</i>The purpose of this work is to accurately and quickly register the Optical coherence tomography (OCT) projection (enface) images at adjacent time points, and to solve the problem of interference caused by CNV lesions on the registration features.<i>Approach.</i>In this work, a multi-feature registration strategy was proposed, in which a combined feature (com-feature) containing 3D information, intersection information and SURF feature was designed. Firstly, the coordinates of all feature points were extracted as combined features, and then these feature coordinates were added to the initial vascular coordinate set simplified by the Douglas-Peucker algorithm as the point set for registration. Finally, the coherent point drift registration algorithm was used to register the enface coordinate point sets of adjacent time series.<i>Main results.</i>The newly designed features significantly improve the success rate of global registration of vascular networks in enface images, while the simplification step greatly improves the registration speed on the basis of preserving vascular features. The MSE, DSC and time complexity of the proposed method are 0.07993, 0.9693 and 42.7016 s, respectively.<i>Significance.</i>CNV is a serious retinal disease in ophthalmology. The registration of OCT enface images at adjacent time points can timely monitor the progress of the disease and assist doctors in making diagnoses. The proposed method not only improves the accuracy of OCT enface image registration, but also significantly reduces the time complexity. It has good registration results in clinical routine and provides a more efficient method for clinical diagnosis and treatment.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable AI for automated respiratory misalignment detection in PET/CT imaging. 用于 PET/CT 成像中自动呼吸错位检测的可解释人工智能。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-29 DOI: 10.1088/1361-6560/ad8857
Yazdan Salimi, Zahra Mansouri, Mehdi Amini, Ismini Mainta, Habib Zaidi
{"title":"Explainable AI for automated respiratory misalignment detection in PET/CT imaging.","authors":"Yazdan Salimi, Zahra Mansouri, Mehdi Amini, Ismini Mainta, Habib Zaidi","doi":"10.1088/1361-6560/ad8857","DOIUrl":"10.1088/1361-6560/ad8857","url":null,"abstract":"<p><p><i>Purpose.</i>Positron emission tomography (PET) image quality can be affected by artifacts emanating from PET, computed tomography (CT), or artifacts due to misalignment between PET and CT images. Automated detection of misalignment artifacts can be helpful both in data curation and in facilitating clinical workflow. This study aimed to develop an explainable machine learning approach to detect misalignment artifacts in PET/CT imaging.<i>Approach.</i>This study included 1216 PET/CT images. All images were visualized and images with respiratory misalignment artifact (RMA) detected. Using previously trained models, four organs including the lungs, liver, spleen, and heart were delineated on PET and CT images separately. Data were randomly split into cross-validation (80%) and test set (20%), then two segmentations performed on PET and CT images were compared and the comparison metrics used as predictors for a random forest framework in a 10-fold scheme on cross-validation data. The trained models were tested on 20% test set data. The model's performance was calculated in terms of specificity, sensitivity, F1-Score and area under the curve (AUC).<i>Main results.</i>Sensitivity, specificity, and AUC of 0.82, 0.85, and 0.91 were achieved in ten-fold data split. F1_score, sensitivity, specificity, and AUC of 84.5 vs 82.3, 83.9 vs 83.8, 87.7 vs 83.5, and 93.2 vs 90.1 were achieved for cross-validation vs test set, respectively. The liver and lung were the most important organs selected after feature selection.<i>Significance.</i>We developed an automated pipeline to segment four organs from PET and CT images separately and used the match between these segmentations to decide about the presence of misalignment artifact. This methodology may follow the same logic as a reader detecting misalignment through comparing the contours of organs on PET and CT images. The proposed method can be used to clean large datasets or integrated into a clinical scanner to indicate artifactual cases.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linearisation of the dose response of composite peak 5 in LiF:Mg,Ti by post-irradiation photon excitation. 通过辐照后光子激发使 LiF:Mg,Ti 中复合峰 5 的剂量响应线性化。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-29 DOI: 10.1088/1361-6560/ad8298
Yigal S Horowitz
{"title":"Linearisation of the dose response of composite peak 5 in LiF:Mg,Ti by post-irradiation photon excitation.","authors":"Yigal S Horowitz","doi":"10.1088/1361-6560/ad8298","DOIUrl":"https://doi.org/10.1088/1361-6560/ad8298","url":null,"abstract":"","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":"69 21","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust optimization incorporating weekly predicted anatomical CTs in IMPT of nasopharyngeal cancer. 将每周预测的解剖 CT 纳入鼻咽癌 IMPT 的稳健优化。
IF 3.3 3区 医学
Physics in medicine and biology Pub Date : 2024-10-28 DOI: 10.1088/1361-6560/ad8859
Mark Ka Heng Chan, Ying Zhang
{"title":"Robust optimization incorporating weekly predicted anatomical CTs in IMPT of nasopharyngeal cancer.","authors":"Mark Ka Heng Chan, Ying Zhang","doi":"10.1088/1361-6560/ad8859","DOIUrl":"10.1088/1361-6560/ad8859","url":null,"abstract":"<p><p><i>Objective.</i>This study proposes a robust optimization (RO) strategy utilizing virtual CTs (vCTs) predicted by an anatomical model in intensity-modulated proton therapy (IMPT) for nasopharyngeal cancer (NPC).<i>Methods and Materials.</i>For ten NPC patients, vCTs capturing anatomical changes at different treatment weeks were generated using a population average anatomy model. Two RO strategies of a 6 beams IMPT with 3 mm setup uncertainty (SU) and 3% range uncertainty (RU) were compared: conventional robust optimization (cRO) based on a single planning CT (pCT), and anatomical RO incorporating 2 and 3 predicted anatomies (aRO2 and aRO3). The robustness of these plans was assessed by recalculating them on weekly CTs (week 2-7) and extracting the voxel wise-minimum and maximum doses with 1 mm SU and 3% RU (voxminvoxmax<sub>1mm3%</sub>).<i>Results.</i>The aRO plans demonstrated improved robustness in high-risk CTV1 and low-risk CTV 2 coverage compared to cRO plans. The weekly evaluation showed a lower plan adaptation rate for aRO3 (40%) vs. cRO (70%). The weekly nominal and voxmax<sub>1mm3%</sub>doses to OARs, especially spinal cord, are better controlled relative to their baseline doses at week 1 with aRO plans. The accumulated dose analysis showed that CTV1&2 had adequate coverage and serial organs (spinal cord and brainstem) were within their dose tolerances in the voxminvoxmax<sub>1mm3%</sub>, respectively.<i>Conclusion.</i>Incorporating predicted weekly CTs from a population based average anatomy model in RO improves week-to-week target dose coverage and reduces false plan adaptations without increasing normal tissue doses. This approach enhances IMPT plan robustness, potentially facilitating reduced SU and further lowering OAR doses.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信