Detection and correction of translational motion in SPECT with exponential data consistency conditions.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
My Hoang Hoa Bui, Antoine Robert, Ane Etxebeste, Simon Rit
{"title":"Detection and correction of translational motion in SPECT with exponential data consistency conditions.","authors":"My Hoang Hoa Bui, Antoine Robert, Ane Etxebeste, Simon Rit","doi":"10.1088/1361-6560/adb09a","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Rigid patient motion can cause artifacts in single photon emission computed tomography (SPECT) images, compromising the diagnosis and treatment planning. Exponential data consistency conditions (eDCCs) are mathematical equations describing the redundancy of exponential SPECT measurements. It has been recently shown that eDCCs can be used to detect patient motion in SPECT projections. This study aimed at developing a fully data-driven method based on eDCCs to estimate and correct for translational motion in SPECT.<i>Approach.</i>If all activity is encompassed inside a convex region<i>K</i>of constant attenuation, eDCCs can be derived from SPECT projections and can be used to verify the pairwise consistency of these projections. Our method assumes a single patient translation between two detector gantry positions. The proposed method estimates both the three-dimensional shift and the motion index, i.e. the index of the first gantry position after motion occurred. The estimation minimizes the eDCCs between the subset of projections before the motion index and the subset of motion-corrected projections after the motion index.<i>Results.</i>We evaluated the proposed method using Monte Carlo simulated and experimental data of a NEMA IEC phantom and simulated projections of a liver patient. The method's robustness was assessed by applying various motion vectors and motion indices. Motion detection and correction with eDCCs were sensitive to movements above 3 mm. The accuracy of the estimation was below the 2.39 mm pixel spacing with good precision in all studied cases. The proposed method led to a significant improvement in the quality of reconstructed SPECT images. The activity recovery coefficient relative to the SPECT image without motion was above 90% on average over the six spheres of the NEMA IEC phantom and 97% for the liver patient. For example, for a(2,2,2)cm translation in the middle of the liver acquisition, the activity recovery coefficient was improved from 35% (non-corrected projections) to 99% (motion-corrected projections).<i>Significance.</i>The study proposed and demonstrated the good performance of translational motion detection and correction with eDCCs in SPECT acquisition data.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adb09a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Rigid patient motion can cause artifacts in single photon emission computed tomography (SPECT) images, compromising the diagnosis and treatment planning. Exponential data consistency conditions (eDCCs) are mathematical equations describing the redundancy of exponential SPECT measurements. It has been recently shown that eDCCs can be used to detect patient motion in SPECT projections. This study aimed at developing a fully data-driven method based on eDCCs to estimate and correct for translational motion in SPECT.Approach.If all activity is encompassed inside a convex regionKof constant attenuation, eDCCs can be derived from SPECT projections and can be used to verify the pairwise consistency of these projections. Our method assumes a single patient translation between two detector gantry positions. The proposed method estimates both the three-dimensional shift and the motion index, i.e. the index of the first gantry position after motion occurred. The estimation minimizes the eDCCs between the subset of projections before the motion index and the subset of motion-corrected projections after the motion index.Results.We evaluated the proposed method using Monte Carlo simulated and experimental data of a NEMA IEC phantom and simulated projections of a liver patient. The method's robustness was assessed by applying various motion vectors and motion indices. Motion detection and correction with eDCCs were sensitive to movements above 3 mm. The accuracy of the estimation was below the 2.39 mm pixel spacing with good precision in all studied cases. The proposed method led to a significant improvement in the quality of reconstructed SPECT images. The activity recovery coefficient relative to the SPECT image without motion was above 90% on average over the six spheres of the NEMA IEC phantom and 97% for the liver patient. For example, for a(2,2,2)cm translation in the middle of the liver acquisition, the activity recovery coefficient was improved from 35% (non-corrected projections) to 99% (motion-corrected projections).Significance.The study proposed and demonstrated the good performance of translational motion detection and correction with eDCCs in SPECT acquisition data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信