Planta最新文献

筛选
英文 中文
Supplementing with monochromatic blue LED light during the day, rather than at night, increases anthocyanins in the berry skin of grapevine (Vitis vinifera L.). 在白天而不是晚上补充单色蓝色 LED 光,可增加葡萄(Vitis vinifera L.)浆果表皮中的花青素。
IF 3.6 3区 生物学
Planta Pub Date : 2024-08-10 DOI: 10.1007/s00425-024-04500-4
Li Liu, Junhua Kong, Peige Fan, Yongjian Wang, Wei Duan, Zhenchang Liang, José Tomás Matus, Zhanwu Dai
{"title":"Supplementing with monochromatic blue LED light during the day, rather than at night, increases anthocyanins in the berry skin of grapevine (Vitis vinifera L.).","authors":"Li Liu, Junhua Kong, Peige Fan, Yongjian Wang, Wei Duan, Zhenchang Liang, José Tomás Matus, Zhanwu Dai","doi":"10.1007/s00425-024-04500-4","DOIUrl":"10.1007/s00425-024-04500-4","url":null,"abstract":"<p><strong>Main conclusion: </strong>Supplying monochromatic blue LED light during the day, but not at night, promotes early coloration and improves anthocyanin accumulation in the skin of grape berries. Specific light spectra, such as blue light, are known to promote the biosynthesis and accumulation of anthocyanins in fruit skins. However, research is scarce on whether supplement of blue light during different periods of one day can differ in their effect. Here, we compared the consequences of supplying blue light during the day and night on the accumulation of anthocyanins in pigmented grapevine (Vitis vinifera) berries. Two treatments of supplemented monochromatic blue light were tested, with light emitting diodes (LED) disposed close to the fruit zone, irradiating between 8:00 and 18:00 (Dayblue) or between 20:00 and 6:00 (Nightblue). Under the Dayblue treatment, berry coloration was accelerated and total anthocyanins in berry skins increased faster than the control (CK) and also when compared to the Nightblue condition. In fact, total anthocyanin content was similar between CK and Nightblue. qRT-PCR analysis indicated that Dayblue slightly improved the relative expression of the anthocyanin-structural gene UFGT and its regulator MYBA1. Instead, the expression of the light-reception and -signaling related genes CRY, HY5, HYH, and COP1 rapidly increased under Dayblue. This study provides insights into the effect of supplementing monochromatic LED blue light during the different periods of one day, on anthocyanins accumulation in the berry skin.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MpR2R3-MYB2 is a key regulator of oil body formation in Marchantia polymorpha. MpR2R3-MYB2 是马钱子油体形成的关键调节因子。
IF 3.6 3区 生物学
Planta Pub Date : 2024-08-09 DOI: 10.1007/s00425-024-04498-9
Hiroyoshi Kubo, Kim Sunhwa, Hiroki Teramori, Kojiro Takanashi
{"title":"MpR2R3-MYB2 is a key regulator of oil body formation in Marchantia polymorpha.","authors":"Hiroyoshi Kubo, Kim Sunhwa, Hiroki Teramori, Kojiro Takanashi","doi":"10.1007/s00425-024-04498-9","DOIUrl":"10.1007/s00425-024-04498-9","url":null,"abstract":"<p><strong>Main conclusion: </strong>MpMYB02, a regulator of marchantin accumulation, also acts as a key regulator of oil body formation. MpMYB02 induces the expression of MpSYP12B and promotes oil body formation, subsequently leading to marchantin accumulation. The oil body observed in Marchantia polymorpha is a cellular organelle surrounded by a unit membrane, accumulating various secondary metabolites such as marchantins and terpenes. We observed that oil body formation is regulated by MpMYB02, a key regulator of marchantin accumulation. In the Mpmyb02 mutant, no oil bodies were observed, although idioblast-like cells were present in the gemma. We introduced MpMYB02-glucocorticoid receptor (GR), a steroid-inducible transcriptional activator, into Mpmyb02 and assessed the effect of dexamethasone (DEX) on oil body formation. Following DEX treatment, transformed liverworts began forming oil bodies within 12 h. During the initial stages of oil body development, we observed the aggregation of small globular structures. DEX treatment upregulated several genes implicated in oil body formation, including MpSYP12B. Our findings underscore that MpMYB02 plays a crucial role not only in marchantin accumulation but also in oil body formation.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological and molecular responses of 'Hamlin' sweet orange trees expressing the VvmybA1 gene under cold stress conditions. 表达 VvmybA1 基因的 "Hamlin "甜橙树在冷胁迫条件下的生理和分子反应。
IF 3.6 3区 生物学
Planta Pub Date : 2024-08-01 DOI: 10.1007/s00425-024-04496-x
Lamiaa M Mahmoud, Nabil Killiny, Manjul Dutt
{"title":"Physiological and molecular responses of 'Hamlin' sweet orange trees expressing the VvmybA1 gene under cold stress conditions.","authors":"Lamiaa M Mahmoud, Nabil Killiny, Manjul Dutt","doi":"10.1007/s00425-024-04496-x","DOIUrl":"10.1007/s00425-024-04496-x","url":null,"abstract":"<p><strong>Main conclusion: </strong>Overexpression of VvmybA1 transcription factor in 'Hamlin' citrus enhances cold tolerance by increasing anthocyanin accumulation. This results in improved ROS scavenging, altered gene expression, and stomatal regulation, highlighting anthocyanins' essential role in citrus cold acclimation. Cold stress is a significant threat to citrus cultivation, impacting tree health and productivity. Anthocyanins are known for their role as pigments and have emerged as key mediators of plant defense mechanisms against environmental stressors. This study investigated the potential of anthocyanin overexpression regulated by grape (Vitis vinifera) VvmybA1 transcription factor to enhance cold stress tolerance in citrus trees. Transgenic 'Hamlin' citrus trees overexpressing VvmybA1 were exposed to a 30-day cold stress period at 4 °C along with the control wild-type trees. Our findings reveal that anthocyanin accumulation significantly influences chlorophyll content and their fluorescence parameters, affecting leaf responses to cold stress. Additionally, we recorded enhanced ROS scavenging capacity and distinct expression patterns of key transcription factors and antioxidant-related genes in the transgenic leaves. Furthermore, VvmybA1 overexpression affected stomatal aperture regulation by moderating ABA biosynthesis, resulting in differential responses in a stomatal opening between transgenic and wild-type trees under cold stress. Transgenic trees exhibited reduced hydrogen peroxide levels, enhanced flavonoids, radical scavenging activity, and altered phytohormonal profiles. These findings highlighted the role of VvmybA1-mediated anthocyanin accumulation in enhancing cold tolerance. The current study also underlines the potential of anthocyanin overexpression as a critical regulator of the cold acclimation process by scavenging ROS in plant tissues.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing the joint effects of arbuscular mycorrhizal fungi and ants on insect herbivory on potato plants. 测试丛枝菌根真菌和蚂蚁对马铃薯植株上昆虫食草行为的共同影响。
IF 3.6 3区 生物学
Planta Pub Date : 2024-07-30 DOI: 10.1007/s00425-024-04492-1
Xoaquín Moreira, Lucía Martín-Cacheda, Gabriela Quiroga, Beatriz Lago-Núñez, Gregory Röder, Luis Abdala-Roberts
{"title":"Testing the joint effects of arbuscular mycorrhizal fungi and ants on insect herbivory on potato plants.","authors":"Xoaquín Moreira, Lucía Martín-Cacheda, Gabriela Quiroga, Beatriz Lago-Núñez, Gregory Röder, Luis Abdala-Roberts","doi":"10.1007/s00425-024-04492-1","DOIUrl":"10.1007/s00425-024-04492-1","url":null,"abstract":"<p><strong>Main conclusion: </strong>Ants, but not mycorrhizae, significantly affected insect leaf-chewing herbivory on potato plants. However, there was no evidence of mutualistic interactive effects on herbivory. Plants associate with both aboveground and belowground mutualists, two prominent examples being ants and arbuscular mycorrhizal fungi (AMF), respectively. While both of these mutualisms have been extensively studied, joint manipulations testing their independent and interactive (non-additive) effects on plants are rare. To address this gap, we conducted a joint test of ant and AMF effects on herbivory by leaf-chewing insects attacking potato (Solanum tuberosum) plants, and further measured plant traits likely mediating mutualist effects on herbivory. In a field experiment, we factorially manipulated the presence of AMF (two levels: control and mycorrhization) and ants (two levels: exclusion and presence) and quantified the concentration of leaf phenolic compounds acting as direct defenses, as well as plant volatile organic compound (VOC) emissions potentially mediating direct (e.g., herbivore repellents) or indirect (e.g., ant attractants) defense. Moreover, we measured ant abundance and performed a dual-choice greenhouse experiment testing for effects of VOC blends (mimicking those emitted by control vs. AMF-inoculated plants) on ant attraction as a mechanism for indirect defense. Ant presence significantly reduced herbivory whereas mycorrhization had no detectable influence on herbivory and mutualist effects operated independently. Plant trait measurements indicated that mycorrhization had no effect on leaf phenolics but significantly increased VOC emissions. However, mycorrhization did not affect ant abundance and there was no evidence of AMF effects on herbivory operating via ant-mediated defense. Consistently, the dual-choice assay showed no effect of AMF-induced volatile blends on ant attraction. Together, these results suggest that herbivory on potato plants responds mainly to top-down (ant-mediated) rather than bottom-up (AMF-mediated) control, an asymmetry in effects which could have precluded mutualist non-additive effects on herbivory. Further research on this, as well as other plant systems, is needed to examine the ecological contexts under which mutualist interactive effects are more or less likely to emerge and their impacts on plant fitness and associated communities.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological characterization of the tomato cutin mutant cd1 under salinity and nitrogen stress. 盐度和氮胁迫下番茄角质突变体 cd1 的生理特征。
IF 3.6 3区 生物学
Planta Pub Date : 2024-07-29 DOI: 10.1007/s00425-024-04494-z
Maria-Sole Bonarota, Dylan Kosma, Felipe H Barrios-Masias
{"title":"Physiological characterization of the tomato cutin mutant cd1 under salinity and nitrogen stress.","authors":"Maria-Sole Bonarota, Dylan Kosma, Felipe H Barrios-Masias","doi":"10.1007/s00425-024-04494-z","DOIUrl":"10.1007/s00425-024-04494-z","url":null,"abstract":"<p><strong>Main conclusion: </strong>We identified tomato leaf cuticle and root suberin monomers that play a role in the response to nitrogen deficiency and salinity stress and discuss their potential agronomic value for breeding. The plant cuticle plays a key role in plant-water relations, and cuticle's agronomic value in plant breeding programs is currently under investigation. In this study, the tomato cutin mutant cd1, with altered fruit cuticle, was physiologically characterized under two nitrogen treatments and three salinity levels. We evaluated leaf wax and cutin load and composition, root suberin, stomatal conductance, photosynthetic rate, partial factor productivity from applied N, flower and fruit number, fruit size and cuticular transpiration, and shoot and root biomass. Both nitrogen and salinity treatments altered leaf cuticle and root suberin composition, regardless of genotype (cd1 or M82). Compared with M82, the cd1 mutant showed lower shoot biomass and reduced partial factor productivity from applied N under all treatments. Under N depletion, cd1 showed altered leaf wax composition, but was comparable to the WT under sufficient N. Under salt treatment, cd1 showed an increase in leaf wax and cutin monomers. Root suberin content of cd1 was lower than M82 under control conditions but comparable under higher salinity levels. The tomato mutant cd1 had a higher fruit cuticular transpiration rate, and lower fruit surface area compared to M82. These results show that the cd1 mutation has complex effects on plant physiology, and growth and development beyond cutin deficiency, and offer new insights on the potential agronomic value of leaf cuticle and root suberin for tomato breeding.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptome-wide m6A methylation profile reveals its potential role underlying drought response in wheat (Triticum aestivum L.). 全转录组 m6A 甲基化图谱揭示了其在小麦(Triticum aestivum L.)干旱响应中的潜在作用。
IF 3.6 3区 生物学
Planta Pub Date : 2024-07-29 DOI: 10.1007/s00425-024-04491-2
Yan Pan, Yanzhe Jia, Wenxin Liu, Qinlong Zhao, Wenqiu Pan, Yongpeng Jia, Shuzuo Lv, Xiaoqin Liu, Xiaojun Nie
{"title":"Transcriptome-wide m6A methylation profile reveals its potential role underlying drought response in wheat (Triticum aestivum L.).","authors":"Yan Pan, Yanzhe Jia, Wenxin Liu, Qinlong Zhao, Wenqiu Pan, Yongpeng Jia, Shuzuo Lv, Xiaoqin Liu, Xiaojun Nie","doi":"10.1007/s00425-024-04491-2","DOIUrl":"10.1007/s00425-024-04491-2","url":null,"abstract":"<p><strong>Main conclusion: </strong>This study revealed the transcriptome-wide m6A methylation profile under drought stress and found that TaETC9 might regulate drought tolerance through mediating RNA methylation in wheat. Drought is one of the most destructive environmental constraints limiting crop growth and development. N6-methyladenosine (m6A) is a prevalent and important post-transcriptional modification in various eukaryotic RNA molecules, playing the crucial role in regulating drought response in plants. However, the significance of m6A in wheat (Triticum aestivum L.), particularly its involvment in drought response, remains underexplored. In this study, we investigated the transcriptome-wide m6A profile under drought stress using parallel m6A immunoprecipitation sequencing (MeRIP-seq). Totally, 4221 m6A peaks in 3733 m6A-modified genes were obtained, of which 373 methylated peaks exhibited differential expression between the control (CK) and drought-stressed treatments. These m6A loci were significantly enriched in proximity to stop codons and within the 3'-untranslated region. Integration of MeRIP-seq and RNA-seq revealed a positive correlation between m6A methylation and mRNA abundance and the genes displaying both differential methylation and expression were obtained. Finally, qRT-PCR analyses were further performed and the results found that the m6A-binding protein (TaETC9) showed significant up-regulation, while the m6A demethylase (TaALKBH10B) was significantly down-regulated under drought stress, contributing to increased m6A levels. Furthermore, the loss-of-function mutant of TaECT9 displayed significantly higher drought sensitivity compared to the wild type, highlighting its role in regulating drought tolerance. This study reported the first wheat m6A profile associated with drought stress, laying the groundwork for unraveling the potential role of RNA methylation in drought responses and enhancing stress tolerance in wheat through epigenetic approaches.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The N-terminal coiled-coil domain of Arabidopsis CROWDED NUCLEI 1 is required for nuclear morphology maintenance 拟南芥 CROWDED NUCLEI 1 的 N 端线圈结构域是维持核形态的必要条件
IF 4.3 3区 生物学
Planta Pub Date : 2024-07-27 DOI: 10.1007/s00425-024-04489-w
Chunmei Yin, Yuanda Wang, Pan Wang, Guangxin Chen, Aiqing Sun, Yuda Fang
{"title":"The N-terminal coiled-coil domain of Arabidopsis CROWDED NUCLEI 1 is required for nuclear morphology maintenance","authors":"Chunmei Yin, Yuanda Wang, Pan Wang, Guangxin Chen, Aiqing Sun, Yuda Fang","doi":"10.1007/s00425-024-04489-w","DOIUrl":"https://doi.org/10.1007/s00425-024-04489-w","url":null,"abstract":"<p>The <i>Arabidopsis</i> CROWDED NUCLEI (CRWN) family proteins form a lamina-like meshwork beneath the nuclear envelope with multiple functions, including maintenance of nuclear morphology, genome organization, DNA damage repair and transcriptional regulation. CRWNs can form homodimers/heterodimers through protein‒protein interactions; however, the exact molecular mechanism of CRWN dimer formation and the diverse functions of different CRWN domains are not clear. In this report, we show that the N-terminal coiled-coil domain of CRWN1 facilitates its homodimerization and heterodimerization with the coiled-coil domains of CRWN2–CRWN4. We further demonstrated that the N-terminus but not the C-terminus of CRWN1 is sufficient to rescue the defect in nuclear morphology of the <i>crwn1 crwn2</i> mutant to the WT phenotype. Moreover, both the N- and C-terminal fragments of CRWN1 are necessary for its normal function in the regulation of plant development. Collectively, our data shed light on the mechanism of plant lamina network formation and the functions of different domains in plant lamin-like proteins.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide SNPs and candidate genes underlying the genetic variations for protein and amino acids in pearl millet (Pennisetum glaucum) germplasm 珍珠粟(Pennisetum glaucum)种质中蛋白质和氨基酸遗传变异的全基因组 SNP 和候选基因
IF 4.3 3区 生物学
Planta Pub Date : 2024-07-27 DOI: 10.1007/s00425-024-04495-y
Satbeer Singh, Chandra Bhan Yadav, Nelson Lubanga, Matthew Hegarty, Rattan S. Yadav
{"title":"Genome-wide SNPs and candidate genes underlying the genetic variations for protein and amino acids in pearl millet (Pennisetum glaucum) germplasm","authors":"Satbeer Singh, Chandra Bhan Yadav, Nelson Lubanga, Matthew Hegarty, Rattan S. Yadav","doi":"10.1007/s00425-024-04495-y","DOIUrl":"https://doi.org/10.1007/s00425-024-04495-y","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main conclusion</h3><p>A total of 544 significant marker-trait associations and 286 candidate genes associated with total protein and 18 amino acids were identified. Thirty-three candidate genes were found near the strong marker trait associations (– log<sub>10</sub><i>P</i> ≥ 5.5).</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Pearl millet (<i>Pennisetum glaucum</i>) is largely grown as a subsistence crop in South Asia and sub-Saharan Africa. It serves as a major source of daily protein intake in these regions. Despite its importance, no systematic effort has been made to study the genetic variations of protein and amino acid content in pearl millet germplasm. The present study was undertaken to dissect the global genetic variations of total protein and 18 essential and non-essential amino acids in pearl millet, using a set of 435 K Single Nucleotide Polymorphisms (SNPs) and 161 genotypes of the Pearl Millet Inbred Germplasm Association Panel (PMiGAP). A total of 544 significant marker-trait associations (at <i>P</i> &lt; 0.0001; – log<sub>10</sub><i>P</i> ≥ 4) were detected and 23 strong marker-trait associations were identified using Bonferroni’s correction method. Forty-eight pleiotropic loci were found in the genome for the studied traits. In total, 286 candidate genes associated with total protein and 18 amino acids were identified. Thirty-three candidate genes were found near strongly associated SNPs. The associated markers and the candidate genes provide an insight into the genetic architecture of the traits studied and are going to be useful in breeding improved pearl millet varieties in the future. Availabilities of improved pearl millet varieties possessing higher protein and amino acid compositions will help combat the rising malnutrition problem via diet.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat-shock transcription factor HsfA8a regulates heat stress response in Sorbus pohuashanensis. 热休克转录因子HsfA8a调控山梨的热胁迫反应
IF 3.6 3区 生物学
Planta Pub Date : 2024-07-26 DOI: 10.1007/s00425-024-04486-z
Yuyan Li, Qianwen Wu, Lingyi Zhu, Ruili Zhang, Boqiang Tong, Yan Wang, Yi Han, Yizeng Lu, Dequan Dou, Zhihui Tian, Jian Zheng, Yan Zhang
{"title":"Heat-shock transcription factor HsfA8a regulates heat stress response in Sorbus pohuashanensis.","authors":"Yuyan Li, Qianwen Wu, Lingyi Zhu, Ruili Zhang, Boqiang Tong, Yan Wang, Yi Han, Yizeng Lu, Dequan Dou, Zhihui Tian, Jian Zheng, Yan Zhang","doi":"10.1007/s00425-024-04486-z","DOIUrl":"10.1007/s00425-024-04486-z","url":null,"abstract":"<p><strong>Main conclusion: </strong>The SpHsfA8a upregulated expression can induce the expression of multiple heat-tolerance genes, and increase the tolerance of Arabidopsis thaliana to high-temperature stress. Sorbus pohuashanensis is an ornamental tree used in courtyards. However, given its poor thermotolerance, the leaves experience sunburn owing to high temperatures in summer, severely affecting its ornamental value. Heat-shock transcription factors play a critical regulatory role in the plant response to heat stress. To explore the heat-tolerance-related genes of S. pohuashanensis to increase the tree's high-temperature tolerance, the SpHsfA8a gene was cloned from S. pohuashanensis, and its structure and expression patterns in different tissues and under abiotic stress were analyzed, as well as its function in heat tolerance, was determined via overexpression in Arabidopsis thaliana. The results showed that SpHsfA8a encodes 416 amino acids with a predicted molecular weight of 47.18 kDa and an isoelectric point of 4.63. SpHsfA8a is a hydrophilic protein without a signal peptide and multiple phosphorylation sites. It also contains a typical DNA-binding domain and is similar to MdHsfA8a in Malus domestica and PbHsfA8 in Pyrus bretschneideri. In S. pohuashanensis, SpHsfA8a is highly expressed in the roots and fruits and is strongly induced under high-temperature stress in leaves. The heterologous expression of SpHsfA8a in A. thaliana resulted in a considerably stronger growth status than that of the wild type after 6 h of treatment at 45 °C. Its proline content, catalase and peroxidase activities also significantly increased, indicating that the SpHsfA8a gene increased the tolerance of A. thaliana to high-temperature stress. SpHsfA8a could induce the expression of multiple heat-tolerance genes in A. thaliana, indicating that SpHsfA8a could strengthen the tolerance of A. thaliana to high-temperature stress through a complex regulatory network. The results of this study lay the foundation for further elucidation of the regulatory mechanism of SpHsfA8a in response of S. pohuashanensis to high-temperature stress.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of little millet (Panicum sumatrense) using novel omics platform and genetic resource integration. 利用新型 Omics 平台和遗传资源整合改良小米(Panicum sumatrense)。
IF 3.6 3区 生物学
Planta Pub Date : 2024-07-25 DOI: 10.1007/s00425-024-04493-0
Abinash Mishra, Suman Dash, Tanya Barpanda, Suman Choudhury, Pratikshya Mishra, Manasi Dash, Digbijaya Swain
{"title":"Improvement of little millet (Panicum sumatrense) using novel omics platform and genetic resource integration.","authors":"Abinash Mishra, Suman Dash, Tanya Barpanda, Suman Choudhury, Pratikshya Mishra, Manasi Dash, Digbijaya Swain","doi":"10.1007/s00425-024-04493-0","DOIUrl":"10.1007/s00425-024-04493-0","url":null,"abstract":"<p><strong>Main conclusion: </strong>This article explores possible future initiatives, such as the development of targeted breeding and integrated omics approach to boost little millet production, nutritional value, and environmental adaptation. Little millet (P. sumatrense) is a staple grain in many parts of Asia and Africa owing to its abundance in vitamins and minerals and its ability to withstand harsh agro-ecological conditions. Enhancing little millet using natural resources and novel crop improvement strategy is an effective way of boosting nutritional and food security. To understand the genetic makeup of the crop and figure out important characteristics linked to nutritional value, biotic and abiotic resistance, and production, researchers in this field are currently resorting on genomic technology. These realizations have expedited the crop's response to shifting environmental conditions by enabling the production of superior cultivars through targeted breeding. Going forward, further improvements in breeding techniques and genetics may boost the resilience, nutritional content, and production of little millet, which would benefit growers and consumers alike. The research and development on little millet improvement using novel omics platform and the integration of genetic resources are summarized in this review paper. Improved cultivars of little millet that satisfy changing farmer and consumer demands have already been developed through the use of these novel breeding strategies. This article also explores possible future initiatives, such as the development of targeted breeding, genomics, and sustainable agriculture methods. The potential for these measures to boost little millet's overall production, nutritional value, and climate adaptation will be extremely helpful in addressing nutritional security.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信