Physical Review DPub Date : 2025-06-09DOI: 10.1103/physrevd.111.l121501
Simone Albanesi
{"title":"Real modes and null memory contributions in effective-one-body models","authors":"Simone Albanesi","doi":"10.1103/physrevd.111.l121501","DOIUrl":"https://doi.org/10.1103/physrevd.111.l121501","url":null,"abstract":"We introduce a novel approach to describe real-valued m</a:mi>=</a:mo>0</a:mn></a:math> modes from inspiral to merger and ringdown in effective-one-body models, including both oscillatory and null memory contributions. A crucial aspect of the modelization of the oscillatory part is the complexification of the real modes via a Hilbert transform. This procedure allows for an accurate description of the merger-ringdown waveform by applying standard approaches employed for the complex <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>m</c:mi><c:mo>></c:mo><c:mn>0</c:mn></c:math> modes, which include source-driven effects. The physical signal is then recovered by solely considering the real part. We apply this method in the extreme-mass-ratio regime, considering particle-driven linear gravitational perturbations in Schwarzschild and Kerr spacetimes. We then extend our description to spin-aligned, quasicircular, comparable-mass binaries providing hierarchical fits incorporating the test-mass limit. The postmerger waveform is then matched with an inspiral effective-one-body waveform. By adopting as our baseline, we also include the displacement memory in the (2, 0) mode through Bondi–van der Burg–Metzner-Sachs balance laws, thus providing a complete effective-one-body model incorporating both oscillatory and null memory effects. The accuracy of this model is validated against the hybrid numerical relativity surrogate , finding, for the quadrupole of the equal mass nonspinning case, a LIGO noise-weighted mismatch of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mover accent=\"true\"><e:mi mathvariant=\"script\">F</e:mi><e:mo stretchy=\"false\">¯</e:mo></e:mover><e:mo>=</e:mo><e:mrow><e:mn>6</e:mn><e:mo>×</e:mo><e:msup><e:mn>10</e:mn><e:mrow><e:mo>−</e:mo><e:mn>4</e:mn></e:mrow></e:msup></e:mrow></e:math> at <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mn>50</j:mn><j:msub><j:mi>M</j:mi><j:mo stretchy=\"false\">⊙</j:mo></j:msub></j:math> for the inclination that maximizes the contribution of the (2, 0) mode. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"102 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144252023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review DPub Date : 2025-06-09DOI: 10.1103/physrevd.111.124012
Gabriel I. Róis, José Tarciso S. S. Junior, Francisco S. N. Lobo, Manuel E. Rodrigues
{"title":"Novel electrically charged wormhole, black hole, and black bounce exact solutions in hybrid metric-Palatini gravity","authors":"Gabriel I. Róis, José Tarciso S. S. Junior, Francisco S. N. Lobo, Manuel E. Rodrigues","doi":"10.1103/physrevd.111.124012","DOIUrl":"https://doi.org/10.1103/physrevd.111.124012","url":null,"abstract":"","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"48 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hodge dual gauge symmetry in minimal Einstein-aether theory","authors":"Kamal Hajian","doi":"10.1103/hpdv-yd6q","DOIUrl":"https://doi.org/10.1103/hpdv-yd6q","url":null,"abstract":"Einstein-aether gravity is a theory that breaks the local Lorentz symmetry by introducing a preferred direction via a vector field, which is considered to play the role of an aether. The theory is identified by four coupling constants between the aether and gravity. Minimal Einstein-aether is the special case in which only one of the couplings is non-zero. We show that the aether vector field in its minimal version is Hodge dual to a gauge field. The gauge symmetry in the dual description has been known for decades and has been used to implement a cosmological constant into the Lagrangian. As a result, solutions to the well-established gauge theory can be transferred into the minimal Einstein-aether theory straightforwardly. On the other hand, some of the proposed solutions to the minimal Einstein-aether theory could be discarded as pure gauges of the vanishing aether. We prove as a theorem that this holds true for all divergenceless aether fields. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"147 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proper time observables of general gravitational perturbations in laser interferometry-based gravitational wave detectors","authors":"Vincent S. H. Lee, Kathryn M. Zurek","doi":"10.1103/6q7d-jz26","DOIUrl":"https://doi.org/10.1103/6q7d-jz26","url":null,"abstract":"We present an explicitly gauge-invariant observable of general gravitational perturbation, h</a:mi></a:mrow>μ</a:mi>ν</a:mi></a:mrow></a:msub></a:mrow></a:math> [ necessarily due to gravitational waves (GWs)], in a laser interferometry-based GW detector, identifying the signature as the proper time elapsed of the beamsplitter observer, between two events: when a photon passes through the beamsplitter, and when the same photon returns to the beamsplitter after traveling through the interferometer arm and reflecting off the far mirror. Our formalism applies to simple Michelson interferometers and can be generalized to more advanced setups. We demonstrate that the proper time observable for a plane GW is equivalent to the detector strain commonly used by the GW community, though now the common framework can be easily generalized for other types of signals, such as dark matter clumps or spacetime fluctuations from quantum gravity. We provide a simple recipe for computing the proper time observable for a general metric perturbation in linearized gravity and explicitly show that it is invariant under diffeomorphisms of the perturbation, as any physical observable should be. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"116 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review DPub Date : 2025-06-06DOI: 10.1103/physrevd.111.114005
Shi Chen, Evgenii Ievlev, Mikhail Shifman
{"title":"Two types of domain walls in N=1 super-QCD: How they are classified and counted","authors":"Shi Chen, Evgenii Ievlev, Mikhail Shifman","doi":"10.1103/physrevd.111.114005","DOIUrl":"https://doi.org/10.1103/physrevd.111.114005","url":null,"abstract":"We study multiplicities and junctions of Bogomol’nyi-Prasad-Sommerfield domain walls interpolating between different chiral vacua in N</a:mi>=</a:mo>1</a:mn></a:math> supersymmetric QCD (SQCD) with the <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mrow><d:mi>SU</d:mi><d:mo stretchy=\"false\">(</d:mo><d:mi>N</d:mi><d:mo stretchy=\"false\">)</d:mo></d:mrow></d:math> gauge group and a varying number of fundamental quarks. Depending on the number of flavors <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mi>F</h:mi></h:math>, two distinct classes of domain walls emerge: (i) locally distinguishable, i.e., those which differ from each other locally, in local experiments; and (ii) those which have identical local structure and are differentiated only topologically, through judiciously chosen compactifications. In the first class, two-wall junctions exist, while in the second class, such junctions do not exist. Acharya and Vafa counted walls in pure super-Yang-Mills. Ritz, Shifman, and Vainshtein counted the walls in <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mi>F</j:mi><j:mo>=</j:mo><j:mi>N</j:mi></j:math> SQCD. In both cases, the multiplicity of <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:mi>k</l:mi></l:math> walls was the same, <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:msubsup><n:mi>ν</n:mi><n:mrow><n:mi>N</n:mi><n:mo>,</n:mo><n:mi>k</n:mi></n:mrow><n:mtext>walls</n:mtext></n:msubsup><n:mo>=</n:mo><n:mi>N</n:mi><n:mo>!</n:mo><n:mo>/</n:mo><n:mo stretchy=\"false\">[</n:mo><n:mo stretchy=\"false\">(</n:mo><n:mi>N</n:mi><n:mo>−</n:mo><n:mi>k</n:mi><n:mo stretchy=\"false\">)</n:mo><n:mo>!</n:mo><n:mi>k</n:mi><n:mo>!</n:mo><n:mo stretchy=\"false\">]</n:mo></n:math>. We study the general case <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:mn>0</t:mn><t:mo>≤</t:mo><t:mi>F</t:mi><t:mo>≤</t:mo><t:mi>N</t:mi></t:math>, with mixed sets of walls from both classes (i) and (ii) simultaneously, and demonstrate that the above overall multiplicity remains intact. We argue that the growth of the quark masses exhibits no phase transition at any finite mass. The locally distinguishable walls can turn into topologically distinguishable ones only at <v:math xmlns:v=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><v:mi>m</v:mi><v:mo>=</v:mo><v:mi>∞</v:mi></v:math>. The evolution of the low-energy wall world sheet theory in the passage from small to large <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:mi>m</x:mi></x:math> is briefly discussed. We also propose a candidate for the low-energy description of wall junctions. The tools used are localization of instantons, supersymmetry enhancement on the walls, and circle compactification. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:c","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"5 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144237117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review DPub Date : 2025-06-06DOI: 10.1103/physrevd.111.116003
D. D. Su, B. F. Shen, Q. Z. Lv
{"title":"Controlling Schwinger tunneling via engineering of virtual particle phases in vacuum","authors":"D. D. Su, B. F. Shen, Q. Z. Lv","doi":"10.1103/physrevd.111.116003","DOIUrl":"https://doi.org/10.1103/physrevd.111.116003","url":null,"abstract":"","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"243 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review DPub Date : 2025-06-06DOI: 10.1103/physrevd.111.124007
Luis Avilés, Joaquim Gomis, Diego Hidalgo, Omar Valdivia
{"title":"AdS Carroll structures from Poincaré isomorphism: Asymptotic symmetry analysis","authors":"Luis Avilés, Joaquim Gomis, Diego Hidalgo, Omar Valdivia","doi":"10.1103/physrevd.111.124007","DOIUrl":"https://doi.org/10.1103/physrevd.111.124007","url":null,"abstract":"Starting from the isomorphism between the anti–de Sitter (AdS) Carroll and Poincaré algebras, we obtain the magnetic AdS Carroll gravity in three dimensions. Moreover, we derive the first set of asymptotic conditions for the AdS Carroll structure, and we prove that the asymptotic symmetry algebra is given by the bms</a:mi>3</a:mn></a:msub></a:math> algebra. By mapping the three-dimensional asymptotically flat solutions of Poincaré gravity into an AdS Carroll spacetime, we demonstrate that the resulting solutions satisfy the field equations of the Chern-Simons formulation of AdS Carroll gravity, and we note that this solution possesses an infinite set of Killing vectors. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"16 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144236841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review DPub Date : 2025-06-06DOI: 10.1103/physrevd.111.116004
Tudor Pătuleanu, Amalia Dariana Fodor, Victor E. Ambruş, Cosmin Crucean
{"title":"Dirac fermions under imaginary rotation","authors":"Tudor Pătuleanu, Amalia Dariana Fodor, Victor E. Ambruş, Cosmin Crucean","doi":"10.1103/physrevd.111.116004","DOIUrl":"https://doi.org/10.1103/physrevd.111.116004","url":null,"abstract":"In the present study, we investigate the properties of an ensemble of free Dirac fermions, at finite inverse temperature β</a:mi></a:math> and finite chemical potential <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>μ</c:mi></c:math>, undergoing rigid rotation with an imaginary angular velocity <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mi mathvariant=\"normal\">Ω</e:mi><e:mo>=</e:mo><e:mi>i</e:mi><e:msub><e:mrow><e:mi mathvariant=\"normal\">Ω</e:mi></e:mrow><e:mrow><e:mi>I</e:mi></e:mrow></e:msub></e:mrow></e:math>. Our purpose is to establish the analytical structure of such states, as well as the prospects (and dangers) of extrapolating results obtained under imaginary rotation to the case of real rotation. We show that in the thermodynamic limit, the state of the system is akin to a stationary system with modified inverse temperature <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>β</i:mi><i:mi>q</i:mi></i:msub><i:mo>=</i:mo><i:mi>q</i:mi><i:mi>β</i:mi></i:math> and the same chemical potential, where <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>q</k:mi></k:math> is the denominator of the irreducible fraction <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>ν</m:mi><m:mo>=</m:mo><m:mi>β</m:mi><m:msub><m:mi mathvariant=\"normal\">Ω</m:mi><m:mi>I</m:mi></m:msub><m:mo>/</m:mo><m:mn>2</m:mn><m:mi>π</m:mi><m:mo>=</m:mo><m:mi>p</m:mi><m:mo>/</m:mo><m:mi>q</m:mi></m:math>. The temperature of the system becomes a fractal function of the rotation parameter, as in the case of the scalar field. The chemical potential breaks the fractalization of fermions. We also compute the thermodynamic potential <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mi mathvariant=\"normal\">Φ</p:mi></p:math> and associated thermodynamic functions, showing that they also exhibit fractal behavior. Finally, we evaluate the axial and helical fluxes through the transverse plane, generated through the vortical effects, and show that they diverge in the thermodynamic limit, in the case when <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>ν</s:mi><s:mo>=</s:mo><s:mn>1</s:mn><s:mo>/</s:mo><s:mi>q</s:mi></s:math> and <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>q</u:mi><u:mo stretchy=\"false\">→</u:mo><u:mi>∞</u:mi></u:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"46 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144236842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review DPub Date : 2025-06-04DOI: 10.1103/physrevd.111.115002
V. Enguita, B. Gavela, T. Steingasser
{"title":"Higgs near-criticality at future colliders","authors":"V. Enguita, B. Gavela, T. Steingasser","doi":"10.1103/physrevd.111.115002","DOIUrl":"https://doi.org/10.1103/physrevd.111.115002","url":null,"abstract":"The so-called metastability bound on the Higgs mass suggests that the smallness of the Higgs mass may be a by-product of the metastability of the electroweak vacuum. A significantly strong bound requires new physics capable of lowering the scale where the Higgs quartic coupling turns negative through renormalization group effects, without destabilizing the electroweak vacuum entirely. We analyze in this context the low-scale Majoron model of neutrino masses, which automatically contains two key elements for a viable scenario: heavy fermions to lower the instability scale and a extended scalar sector to stabilize the potential and achieve realistic lifetimes for the electroweak vacuum. We show how the metastability bound can be generalized to theories with multiple scalars and present an efficient way of calculating the tunneling rate in such potentials. We also demonstrate that FCC will probe regions of the parameter space relevant for metastability: large regions of the fermionic sector at FCC-ee and some reach to the scalar sector at FCC-hh. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"85 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144219090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}