虚旋转下的狄拉克费米子

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Tudor Pătuleanu, Amalia Dariana Fodor, Victor E. Ambruş, Cosmin Crucean
{"title":"虚旋转下的狄拉克费米子","authors":"Tudor Pătuleanu, Amalia Dariana Fodor, Victor E. Ambruş, Cosmin Crucean","doi":"10.1103/physrevd.111.116004","DOIUrl":null,"url":null,"abstract":"In the present study, we investigate the properties of an ensemble of free Dirac fermions, at finite inverse temperature β</a:mi></a:math> and finite chemical potential <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>μ</c:mi></c:math>, undergoing rigid rotation with an imaginary angular velocity <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mi mathvariant=\"normal\">Ω</e:mi><e:mo>=</e:mo><e:mi>i</e:mi><e:msub><e:mrow><e:mi mathvariant=\"normal\">Ω</e:mi></e:mrow><e:mrow><e:mi>I</e:mi></e:mrow></e:msub></e:mrow></e:math>. Our purpose is to establish the analytical structure of such states, as well as the prospects (and dangers) of extrapolating results obtained under imaginary rotation to the case of real rotation. We show that in the thermodynamic limit, the state of the system is akin to a stationary system with modified inverse temperature <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>β</i:mi><i:mi>q</i:mi></i:msub><i:mo>=</i:mo><i:mi>q</i:mi><i:mi>β</i:mi></i:math> and the same chemical potential, where <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>q</k:mi></k:math> is the denominator of the irreducible fraction <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>ν</m:mi><m:mo>=</m:mo><m:mi>β</m:mi><m:msub><m:mi mathvariant=\"normal\">Ω</m:mi><m:mi>I</m:mi></m:msub><m:mo>/</m:mo><m:mn>2</m:mn><m:mi>π</m:mi><m:mo>=</m:mo><m:mi>p</m:mi><m:mo>/</m:mo><m:mi>q</m:mi></m:math>. The temperature of the system becomes a fractal function of the rotation parameter, as in the case of the scalar field. The chemical potential breaks the fractalization of fermions. We also compute the thermodynamic potential <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mi mathvariant=\"normal\">Φ</p:mi></p:math> and associated thermodynamic functions, showing that they also exhibit fractal behavior. Finally, we evaluate the axial and helical fluxes through the transverse plane, generated through the vortical effects, and show that they diverge in the thermodynamic limit, in the case when <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>ν</s:mi><s:mo>=</s:mo><s:mn>1</s:mn><s:mo>/</s:mo><s:mi>q</s:mi></s:math> and <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>q</u:mi><u:mo stretchy=\"false\">→</u:mo><u:mi>∞</u:mi></u:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"46 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirac fermions under imaginary rotation\",\"authors\":\"Tudor Pătuleanu, Amalia Dariana Fodor, Victor E. Ambruş, Cosmin Crucean\",\"doi\":\"10.1103/physrevd.111.116004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, we investigate the properties of an ensemble of free Dirac fermions, at finite inverse temperature β</a:mi></a:math> and finite chemical potential <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mi>μ</c:mi></c:math>, undergoing rigid rotation with an imaginary angular velocity <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mrow><e:mi mathvariant=\\\"normal\\\">Ω</e:mi><e:mo>=</e:mo><e:mi>i</e:mi><e:msub><e:mrow><e:mi mathvariant=\\\"normal\\\">Ω</e:mi></e:mrow><e:mrow><e:mi>I</e:mi></e:mrow></e:msub></e:mrow></e:math>. Our purpose is to establish the analytical structure of such states, as well as the prospects (and dangers) of extrapolating results obtained under imaginary rotation to the case of real rotation. We show that in the thermodynamic limit, the state of the system is akin to a stationary system with modified inverse temperature <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msub><i:mi>β</i:mi><i:mi>q</i:mi></i:msub><i:mo>=</i:mo><i:mi>q</i:mi><i:mi>β</i:mi></i:math> and the same chemical potential, where <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>q</k:mi></k:math> is the denominator of the irreducible fraction <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi>ν</m:mi><m:mo>=</m:mo><m:mi>β</m:mi><m:msub><m:mi mathvariant=\\\"normal\\\">Ω</m:mi><m:mi>I</m:mi></m:msub><m:mo>/</m:mo><m:mn>2</m:mn><m:mi>π</m:mi><m:mo>=</m:mo><m:mi>p</m:mi><m:mo>/</m:mo><m:mi>q</m:mi></m:math>. The temperature of the system becomes a fractal function of the rotation parameter, as in the case of the scalar field. The chemical potential breaks the fractalization of fermions. We also compute the thermodynamic potential <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:mi mathvariant=\\\"normal\\\">Φ</p:mi></p:math> and associated thermodynamic functions, showing that they also exhibit fractal behavior. Finally, we evaluate the axial and helical fluxes through the transverse plane, generated through the vortical effects, and show that they diverge in the thermodynamic limit, in the case when <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mi>ν</s:mi><s:mo>=</s:mo><s:mn>1</s:mn><s:mo>/</s:mo><s:mi>q</s:mi></s:math> and <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mi>q</u:mi><u:mo stretchy=\\\"false\\\">→</u:mo><u:mi>∞</u:mi></u:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.116004\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.116004","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们研究了在有限逆温度β和有限化学势μ下,以虚角速度Ω=iΩI进行刚体旋转的自由狄拉克费米子系综的性质。我们的目的是建立这种状态的分析结构,以及将虚旋转下得到的结果外推到实旋转情况的前景(和危险)。我们证明了在热力学极限下,系统的状态类似于一个具有修正的逆温度βq=qβ和相同化学势的固定系统,其中q是不可约分数ν=βΩI/2π=p/q的分母。系统的温度成为旋转参数的分形函数,如在标量场的情况下。化学势打破了费米子的分形。我们还计算了热力学势Φ和相关的热力学函数,表明它们也表现出分形行为。最后,我们计算了由涡旋效应产生的横切面轴向通量和螺旋通量,并表明当ν=1/q和q→∞时,它们在热力学极限下是发散的。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dirac fermions under imaginary rotation
In the present study, we investigate the properties of an ensemble of free Dirac fermions, at finite inverse temperature β and finite chemical potential μ, undergoing rigid rotation with an imaginary angular velocity Ω=iΩI. Our purpose is to establish the analytical structure of such states, as well as the prospects (and dangers) of extrapolating results obtained under imaginary rotation to the case of real rotation. We show that in the thermodynamic limit, the state of the system is akin to a stationary system with modified inverse temperature βq=qβ and the same chemical potential, where q is the denominator of the irreducible fraction ν=βΩI/2π=p/q. The temperature of the system becomes a fractal function of the rotation parameter, as in the case of the scalar field. The chemical potential breaks the fractalization of fermions. We also compute the thermodynamic potential Φ and associated thermodynamic functions, showing that they also exhibit fractal behavior. Finally, we evaluate the axial and helical fluxes through the transverse plane, generated through the vortical effects, and show that they diverge in the thermodynamic limit, in the case when ν=1/q and q. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信