Two types of domain walls in N=1 super-QCD: How they are classified and counted

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Shi Chen, Evgenii Ievlev, Mikhail Shifman
{"title":"Two types of domain walls in N=1 super-QCD: How they are classified and counted","authors":"Shi Chen, Evgenii Ievlev, Mikhail Shifman","doi":"10.1103/physrevd.111.114005","DOIUrl":null,"url":null,"abstract":"We study multiplicities and junctions of Bogomol’nyi-Prasad-Sommerfield domain walls interpolating between different chiral vacua in N</a:mi>=</a:mo>1</a:mn></a:math> supersymmetric QCD (SQCD) with the <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mrow><d:mi>SU</d:mi><d:mo stretchy=\"false\">(</d:mo><d:mi>N</d:mi><d:mo stretchy=\"false\">)</d:mo></d:mrow></d:math> gauge group and a varying number of fundamental quarks. Depending on the number of flavors <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mi>F</h:mi></h:math>, two distinct classes of domain walls emerge: (i) locally distinguishable, i.e., those which differ from each other locally, in local experiments; and (ii) those which have identical local structure and are differentiated only topologically, through judiciously chosen compactifications. In the first class, two-wall junctions exist, while in the second class, such junctions do not exist. Acharya and Vafa counted walls in pure super-Yang-Mills. Ritz, Shifman, and Vainshtein counted the walls in <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mi>F</j:mi><j:mo>=</j:mo><j:mi>N</j:mi></j:math> SQCD. In both cases, the multiplicity of <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:mi>k</l:mi></l:math> walls was the same, <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:msubsup><n:mi>ν</n:mi><n:mrow><n:mi>N</n:mi><n:mo>,</n:mo><n:mi>k</n:mi></n:mrow><n:mtext>walls</n:mtext></n:msubsup><n:mo>=</n:mo><n:mi>N</n:mi><n:mo>!</n:mo><n:mo>/</n:mo><n:mo stretchy=\"false\">[</n:mo><n:mo stretchy=\"false\">(</n:mo><n:mi>N</n:mi><n:mo>−</n:mo><n:mi>k</n:mi><n:mo stretchy=\"false\">)</n:mo><n:mo>!</n:mo><n:mi>k</n:mi><n:mo>!</n:mo><n:mo stretchy=\"false\">]</n:mo></n:math>. We study the general case <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:mn>0</t:mn><t:mo>≤</t:mo><t:mi>F</t:mi><t:mo>≤</t:mo><t:mi>N</t:mi></t:math>, with mixed sets of walls from both classes (i) and (ii) simultaneously, and demonstrate that the above overall multiplicity remains intact. We argue that the growth of the quark masses exhibits no phase transition at any finite mass. The locally distinguishable walls can turn into topologically distinguishable ones only at <v:math xmlns:v=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><v:mi>m</v:mi><v:mo>=</v:mo><v:mi>∞</v:mi></v:math>. The evolution of the low-energy wall world sheet theory in the passage from small to large <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:mi>m</x:mi></x:math> is briefly discussed. We also propose a candidate for the low-energy description of wall junctions. The tools used are localization of instantons, supersymmetry enhancement on the walls, and circle compactification. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"5 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.114005","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We study multiplicities and junctions of Bogomol’nyi-Prasad-Sommerfield domain walls interpolating between different chiral vacua in N=1 supersymmetric QCD (SQCD) with the SU(N) gauge group and a varying number of fundamental quarks. Depending on the number of flavors F, two distinct classes of domain walls emerge: (i) locally distinguishable, i.e., those which differ from each other locally, in local experiments; and (ii) those which have identical local structure and are differentiated only topologically, through judiciously chosen compactifications. In the first class, two-wall junctions exist, while in the second class, such junctions do not exist. Acharya and Vafa counted walls in pure super-Yang-Mills. Ritz, Shifman, and Vainshtein counted the walls in F=N SQCD. In both cases, the multiplicity of k walls was the same, νN,kwalls=N!/[(Nk)!k!]. We study the general case 0FN, with mixed sets of walls from both classes (i) and (ii) simultaneously, and demonstrate that the above overall multiplicity remains intact. We argue that the growth of the quark masses exhibits no phase transition at any finite mass. The locally distinguishable walls can turn into topologically distinguishable ones only at m=. The evolution of the low-energy wall world sheet theory in the passage from small to large m is briefly discussed. We also propose a candidate for the low-energy description of wall junctions. The tools used are localization of instantons, supersymmetry enhancement on the walls, and circle compactification. Published by the American Physical Society 2025
N=1超级qcd中两种类型的域壁:如何分类和计数
研究了具有SU(N)规范群和不同数量基本夸克的N=1超对称QCD (SQCD)中不同手性真空之间插入的Bogomol 'nyi-Prasad-Sommerfield域壁的多重性和结性。根据口味F的数量,出现了两种不同类型的域壁:(i)局部可区分的,即在局部实验中彼此不同的域壁;(ii)那些具有相同的局部结构,通过明智地选择紧化,仅在拓扑上区分。在第一类中,存在两壁结,而在第二类中,不存在这种结。阿查里亚和瓦法在纯阳磨坊里数墙。Ritz, Shifman和Vainshtein在F=N SQCD中计算了这些墙。在这两种情况下,k个壁的多重性是相同的,νN,kwalls=N!/[(N−k)!k!]。我们研究了0≤F≤N的一般情况,同时存在(i)和(ii)两类的混合壁集,并证明了上述总体多重性保持不变。我们认为夸克质量的增长在任何有限质量下都不表现出相变。局部可分辨的壁只有在m=∞时才能转变为拓扑可分辨的壁。简要讨论了低能壁世界板理论从小m到大m的演变过程。我们还提出了壁结的低能量描述的候选。使用的工具是瞬子的局部化、壁上的超对称增强和圆紧化。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信