{"title":"Influence of grain size and plastic deformation on the phase transformation of enstatite: insights from microstructures produced during the back-transformation of protoenstatite to clinoenstatite","authors":"Miki Tasaka, Maya Iwago","doi":"10.1007/s00269-024-01294-5","DOIUrl":"10.1007/s00269-024-01294-5","url":null,"abstract":"<div><p>Enstatite (Mg<sub>2</sub>Si<sub>2</sub>O<sub>6</sub>) is a member of the pyroxene group and an important mineral in the lower crust and upper mantle. Enstatite has three phases at ambient pressure: protoenstatite, orthoenstatite, and clinoenstatite. Previously, the polymorphic transformation of pyroxene has been characterized using bulk techniques such as X-ray diffraction of powders. Given that rocks are crystal aggregates, it is important to use aggregates to understand phase transformations. We therefore conducted grain growth and deformation experiments using aggregates of enstatite to investigate phase transformations. Grain growth experiments were conducted at temperatures (<i>T</i>) of 1345 and 1360 °C under a vacuum of ≈ 10 Pa using an alumina tube furnace. Deformation experiments were conducted at <i>T</i> = 1310 °C and room pressure, a strain rate of ≈ 10<sup>–4</sup> s<sup>–1</sup>, and a resulting stress of ≈ 150 MPa. The samples were analyzed using a scanning electron microscope, electron backscatter diffraction (EBSD), and X-ray diffraction. The results indicate that the grain size affects the transformation from protoenstatite to clinoenstatite, whereas deformation by diffusion creep does not. The EBSD analyses show that the volume fraction of clinoenstatite increases with increasing grain size. The samples underwent diffusion creep during the deformation experiments, and there were no distinct microstructural differences between deformed and undeformed samples. The EBSD analyses show that the transformed clinoenstatite has a characteristic twin structure with a misorientation angle of 180° and a rotation axis of [100] or [001]. Grain sizes become smaller during the phase transformation, even if the mechanism can be characterized as a second-order transformation.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01294-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Yu. Likhacheva, Alexandr V. Romanenko, Sergey V. Rashchenko, Sofija Miloš, Paolo Lotti, Ronald Miletich, Anton Shatskiy
{"title":"Crystallographic mechanism of the elastic behaviour of synthetic bütschliite K2Ca(CO3)2 on compression to 20 GPa","authors":"Anna Yu. Likhacheva, Alexandr V. Romanenko, Sergey V. Rashchenko, Sofija Miloš, Paolo Lotti, Ronald Miletich, Anton Shatskiy","doi":"10.1007/s00269-024-01291-8","DOIUrl":"10.1007/s00269-024-01291-8","url":null,"abstract":"<div><p>Bütschliite, K<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>, occurring as inclusions in mantle minerals, is regarded as one of the key phases to understand phase relationships of dense potassium carbonates and thus to evaluate their potential role within the Earth’s deep carbon cycle. Accordingly, the high-pressure behavior of synthetic bütschliite has been investigated by in-situ single-crystal X-ray diffraction under isothermal compression up to 20 GPa at <i>T</i> = 298 K. The compression mechanism before and after the trigonal-to-monoclinic (<i>R</i>-3<i>m</i> to <i>C</i>2/<i>m</i>) phase transition at ∼6 GPa, found previously, is characterized in terms of the evolution of the cation polyhedra and carbonate groups. On this basis, the modulation of the axial compression is interpreted, and the contribution of the cation polyhedra into the bulk compression is estimated. The refined compressibility of the monoclinic phase (<i>K</i><sub>0</sub> = 44(2) GPa) fits to the trend of the carbonate bulk modulus <i>versus</i> average non-carbon cation radius. The analysis of the obtained and literature structural data suggests the distortion of a large cation polyhedron to be an effective tool to strengthen the carbonate structure at high pressure. On the other hand, the observed symmetrization of the cation polyhedra in trigonal bütschliite is apparently a crucial factor of its stabilization at high pressure upon the temperature rise observed previously. The structural crystallography provided in this study supports the enhanced stability of trigonal bütschliite at high <i>P</i>,<i> T</i> conditions and its significance of being considered as a constituent of the inclusions in deep minerals.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01291-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mark A. Ignatov, Sergey V. Rashchenko, Anna Yu Likhacheva, Alexandr V. Romanenko, Anton F. Shatskiy, Anton V. Arefiev, Konstantin D. Litasov
{"title":"High-pressure structural behavior of α-K2Ca3(CO3)4 up to 20 GPa","authors":"Mark A. Ignatov, Sergey V. Rashchenko, Anna Yu Likhacheva, Alexandr V. Romanenko, Anton F. Shatskiy, Anton V. Arefiev, Konstantin D. Litasov","doi":"10.1007/s00269-024-01292-7","DOIUrl":"10.1007/s00269-024-01292-7","url":null,"abstract":"<div><p>K-Ca double carbonates recently identified in inclusions in diamonds, as well as associated alkali-carbonate melts can play an important role in the deep carbon cycle. We studied pressure-induced changes in the crystal structure of high-pressure α-K<sub>2</sub>Ca<sub>3</sub>(CO<sub>3</sub>)<sub>4</sub> phase up to 20 GPa using synchrotron single-crystal x-ray diffraction in diamond anvil cell. At ~ 7 GPa at room temperature the orthorhombic <i>P</i>2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> phase of α-K<sub>2</sub>Ca<sub>3</sub>(CO<sub>3</sub>)<sub>4</sub> undergoes displacive phase transition into monoclinic <i>P</i>112<sub>1</sub> phase. Despite the phase transition, <i>PV</i>-curve does not demonstrate any irregularities so that both phases can be described by the same 4th order Birch-Murnaghan equation of state with <i>V</i><sub>0</sub> = 1072.5(3) Å<sup>3</sup>, <i>K</i><sub>0</sub> = 51.1(8) GPa, <i>K</i>’<sub>0</sub>=3.7(3), <i>K</i>’’<sub>0</sub>=0.12(6).</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New insight into the phase transition and kinetics of the dehydroxylation of bulk-to-nano chrysotile","authors":"Jifa Long, Wentao Liu, Ningbo Zhang, Hanting Zhang, Qi Xiao, Suping Huang","doi":"10.1007/s00269-024-01288-3","DOIUrl":"10.1007/s00269-024-01288-3","url":null,"abstract":"<div><p>In this work, the self-made chrysotile fiber membrane (CFM) and raw chrysotile fiber (CF) were calcined in air from 500 to 800 °C. The XRD pattern of CFM showed that the diffraction peak of chrysotile weakened when the temperature was from room temperature to 550 °C, and CFM had a shorter amorphous interval at 600–700 °C. While, no amorphous phase appeared in CF during calcination, and forsterite begined to appear at 650 °C. SEM images showed that CFM could still maintain the integrity of the network structure at 600–800 °C, while CF gradually melted into coarse fiber bundles with the increase of calcination temperature, and sintering traces appeared. After that,the kinetics of the dehydroxylation of chrysotile in CFM and CF was studied. The dehydroxylation of CFM is a one-step reaction, the calculated activation energy is 243.33 kJ mol<sup>−1</sup>, which conforms to the two-dimensional ‘Valensi’ model with mechanism function G(α) = (1−α)ln(1−α) + α. The dehydroxylation of CF is divided into two stages, the activation energy are 222.87 kJ mol<sup>−1</sup> and 316.04 kJ mol<sup>−1</sup>. The first stage of CF conforms to two-dimensional ‘Jander’ model (n = 2) with mechanism function G(α) = [1−(1−α)<sup>1/2</sup>]<sup>2</sup>, the second stage of CF conforms to the random nucleation and subsequent growth ‘Avrami-Erofeev’ model (n = 3/2) with mechanism function G(α) = [−ln(1−α)]<sup>2/3</sup><i>.</i></p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical infrared signature of OH defects in Fe3+, Cr3+ and Al3+-doped enstatite","authors":"Etienne Balan, Jannick Ingrin","doi":"10.1007/s00269-024-01289-2","DOIUrl":"10.1007/s00269-024-01289-2","url":null,"abstract":"<div><p>The infrared spectroscopic properties of selected defects involving one proton and one nearby M<sup>3+</sup> (M = Al, Cr, Fe) substitution in orthoenstatite are investigated by first-principles calculations. Based on the theoretical results, the absorption bands experimentally observed on synthetic samples with high crystalline quality and low doping levels can be assigned to specific defect configurations. Most of them correspond to Mg vacancies at M2 sites locally compensated by one proton and one M<sup>3+</sup> cation at a nearby M1 site. This confirms that the M<sup>3+</sup> + H<sup>+</sup> = 2 Mg<sup>2+</sup> exchange mechanism is the dominant hydrogen incorporation mechanism at the lowest concentration levels in doped enstatite. At higher concentration levels, more complex incorporation mechanisms could become dominant in Al-bearing samples.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meryem Berrada, Siheng Wang, Bin Chen, Vitali Prakapenka, Stella Chariton, Marc M. Hirschmann, Jie Li
{"title":"Pressure–volume equation of state of Fe18Pt82","authors":"Meryem Berrada, Siheng Wang, Bin Chen, Vitali Prakapenka, Stella Chariton, Marc M. Hirschmann, Jie Li","doi":"10.1007/s00269-024-01275-8","DOIUrl":"10.1007/s00269-024-01275-8","url":null,"abstract":"<div><p>Platinum-iron (Pt-Fe) alloys have long served as oxygen fugacity sensors in high-temperature experiments investigating Earth and planetary interiors, relying on the equilibrium between Fe within the alloy and FeO in coexisting oxides or silicates. Despite their significance, studies on intermediate compositions remain limited. This investigation focuses on compressibility of Fe<sub>18</sub>Pt<sub>82</sub> up to <span>(sim)</span> 40 GPa at ambient temperature and explores the pressure-dependent characteristics of the oxygen fugacity relationship. In-situ X-ray diffraction measurements confirm the stability of the <i>fcc</i> phase in Fe<sub>18</sub>Pt<sub>82</sub> across the pressure range. The fit to the compression data by the third-order Birch–Murnaghan equation of state results in <span>({V}_{0}=59.14 pm 0.08)</span>Å<sup>3</sup>, <span>({K}_{0}=266 pm 13)</span> GPa, and <span>({K}_{0}^{prime}=4.7 pm 0.7)</span>. The differences between this fit and the Vinet and Kunc equations of state fall within the range of uncertainty. Comparing results with reported data for other Pt-Fe alloys reveals a nearly linear trend between volume and the Fe content in Pt-Fe alloys at ambient pressure. Unlike more iron-rich alloys, the excess volume of mixing of Fe<sub>18</sub>Pt<sub>82</sub> (<span>(sim)</span> 0.21 cm<sup>3</sup>/mol) remains nearly constant across the examined pressure range. Estimates of the excess Gibbs free energy suggest diminishing non-ideal contributions to thermodynamic activities as pressure increases.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhang Xiyue, Sun Hongjuan, Peng Tongjiang, Zeng Li, Liu Bo
{"title":"Purification mechanism of microcrystalline graphite and dissolution of non-carbon impurity during alkali autoclave-acid leaching","authors":"Zhang Xiyue, Sun Hongjuan, Peng Tongjiang, Zeng Li, Liu Bo","doi":"10.1007/s00269-024-01290-9","DOIUrl":"10.1007/s00269-024-01290-9","url":null,"abstract":"<div><p>Low impurity content is crucial for graphite applications and microcrystalline graphite is an important candidate material. In this study, natural microcrystalline graphite, with a fixed carbon content of 76.65%, was purified by an alkaline autoclave-acid leaching method. The effects of the mole ratio of NaOH to Si and Al in graphite, the liquid–solid ratio of NaOH solution and graphite, alkali autoclave temperature and reaction time on the purity of microcrystalline graphite were studied. Results showed that the dissolution and phase transformation of non-carbon impurities were closely related to the purification process. During the alkali autoclave stage, complete dissolution of quartz was observed. The Si–O tetrahedra and Al–O octahedra structures in aluminosilicate minerals were damaged and [Al (OH)<sub>4</sub>]<sup>−</sup>, [H<sub>2</sub>SiO<sub>4</sub>]<sup>2−</sup> and [SiO<sub>2</sub> (OH)<sub>3</sub>]<sup>−</sup> were released. The soluble silicate and aluminate ions underwent recrystallization, producing cancrinite and sodalite that could be dissolved by acid leaching, resulting in purified microcrystalline graphite. The purity of microcrystalline graphite was further improved due to the autoclave treatment allowed NaOH solution to penetrate into the cracks of microcrystalline graphite aggregates under high pressure. In addition, the acid solution could enter the micropores left by alkali etching to dissolve the residual impurities. The fixed carbon content of microcrystalline graphite could be increased to 99.9% through the alkaline autoclave-acid leaching method.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carina Silke Hanser, Per Erik Vullum, Antonius Theodorus Johannes van Helvoort, Fabian Dietmar Schmitz, Tobias Häger, Roman Botcharnikov, Bodil Holst
{"title":"Atomic resolution transmission electron microscopy visualisation of channel occupancy in beryl in different crystallographic directions","authors":"Carina Silke Hanser, Per Erik Vullum, Antonius Theodorus Johannes van Helvoort, Fabian Dietmar Schmitz, Tobias Häger, Roman Botcharnikov, Bodil Holst","doi":"10.1007/s00269-024-01285-6","DOIUrl":"10.1007/s00269-024-01285-6","url":null,"abstract":"<div><p>The causes of colour in beryl have been a research topic for decades. For some varieties, such as emerald (green, coloured by Cr<sup>3+</sup> and/or V<sup>3+</sup>), the main cause of colour is substitutions by metal atoms within the framework. However, the causes for the yellow and blue colours in heliodor, golden beryl and aquamarine are still debated. It is generally agreed that Fe ions are responsible for the colour, but there are differing conclusions about the valence states of these ions, the occupied positions and the colour-inducing processes involved. The colour of aquamarine is commonly attributed to intervalence charge transfer (IVCT) between Fe<sup>3+</sup> and Fe<sup>2+</sup>. Various combinations of sites have been proposed to host the Fe ions engaging in this IVCT. Here we present a new approach to address the topic of colour generation: atomic resolution scanning transmission electron microscopy (STEM). For the first time, atomic resolution images of a beryl (natural aquamarine) are presented in the three crystallographic directions [0001], [1-210] and [1-100]. Ions are clearly resolved in the channels. From the ratio of channel occupation and the correlation of the atoms per formula unit (apfu) calculations we conclude that Fe resides in the framework, not in the channels. The projections in the [1-210] direction directly show that the cavity channel site 2<i>a</i> is occupied, most likely by Cs, in agreement with recent results in the literature.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01285-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The packing fraction of the oxygen sublattice: its impact on the heat of mixing","authors":"Artur Benisek, Edgar Dachs","doi":"10.1007/s00269-024-01277-6","DOIUrl":"10.1007/s00269-024-01277-6","url":null,"abstract":"<div><p>The heat of mixing of some petrological relevant substitutions (i.e., Mg-Al, Si-Al, Mg-Ti, Mg-Ca, and Mg-Fe) was investigated systematically in silicates, titanates, tungstates, carbonates, oxides, hydroxides, and sulphates by density functional theory calculations (e.g., melilite, chlorite, biotite, brucite, cordierite, amphibole, talc, pseudobrookite, pyroxene, olivine, wadsleyite, ilmenite, MgWO<sub>4</sub>, ringwoodite (spinel), perovskite, pyrope-grossular, magnesite-calcite, MgO-CaO, anhydrous and different hydrated MgSO<sub>4</sub>). A specific substitution is characterised by different microscopic interaction energies in different minerals, e.g., the octahedral Mg-Al exchange on a single crystallographic site in pyroxene has a microscopic interaction energy that is more than twice compared to that in biotite. A comparative investigation of the heat of mixing using microscopic interaction energies on a single crystallographic site has the advantage that they are not influenced by cation ordering. They could be successfully correlated with the stiffnesses of the minerals, which in turn were scaled to the oxygen packing fraction, a parameter that is easily available for poorly investigated minerals. With this information, the interaction energies of a certain substitution can be transferred from minerals where they are well-known to mineral groups where they are less- or unknown. Using the cross-site terms and the microscopic interaction energies, the macroscopic interaction energies of the coupled substitution, e.g., Mg + Si = Al + Al, of biotite and pyroxene were calculated, which are, however, affected by cation ordering and different degrees of local charge balance, for which appropriate models are necessary.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01277-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Diego Gatta, Silvia C. Capelli, Davide Comboni, Enrico Cannaò
{"title":"On the crystal-chemistry of inderite, Mg[B3O3(OH)5](H2O)4·H2O","authors":"G. Diego Gatta, Silvia C. Capelli, Davide Comboni, Enrico Cannaò","doi":"10.1007/s00269-024-01281-w","DOIUrl":"10.1007/s00269-024-01281-w","url":null,"abstract":"<div><p>The crystal chemistry of inderite, a hydrous borate with known ideal formula MgB<sub>3</sub>O<sub>3</sub>(OH)<sub>5</sub>·5H<sub>2</sub>O from the Kramer deposit, was re-investigated by electron probe micro-analysis in wavelength dispersive mode, laser ablation-(multi collector-)inductively coupled plasma-mass spectrometry and single-crystal neutron diffraction. The chemical data prove that the real composition of the investigated inderite is substantially identical to the ideal one, with insignificant content of potential isomorphic substituents, so that, excluding B, inderite does not contain any other industrially-relevant element (e.g., Li concentration is lower than 2.5 wt ppm, Be or REE lower than 0.1 wt ppm). The average δ<sup>11</sup>B<sub>NIST951</sub> value of <i>ca.</i> − 7 ‰ lies within the range of values in which the source of boron is ascribable to terrestrial reservoirs (e.g., hydrothermal brines), rather than to marine ones. Neutron structure refinements, at both 280 and 10 K, confirm that the building units of the structure of inderite consist of: two BO<sub>2</sub>(OH)<sub>2</sub> tetrahedra (B-ion in <i>sp</i><sup>3</sup> electronic configuration) and one BO<sub>2</sub>(OH) triangle (B-ion in <i>sp</i><sup>2</sup> electronic configuration), linked by corner-sharing to form a (soroborate) B<sub>3</sub>O<sub>3</sub>(OH)<sub>5</sub> ring, and a Mg-octahedron Mg(OH)<sub>2</sub>(OH<sub>2</sub>)<sub>4</sub>. The B<sub>3</sub>O<sub>3</sub>(OH)<sub>5</sub> ring and the Mg-octahedron are connected, by corner-sharing, to form an isolated Mg(H<sub>2</sub>O)<sub>4</sub>B<sub>3</sub>O<sub>3</sub>(OH)<sub>5</sub> (molecular) cluster. The tri-dimensional edifice of inderite is therefore built by heteropolyhedral Mg(H<sub>2</sub>O)<sub>4</sub>B<sub>3</sub>O<sub>3</sub>(OH)<sub>5</sub> clusters mutually connected by H-bonds, mediated by the zeolitic (“interstitial”) H<sub>2</sub>O molecules lying between the clusters, so that the correct form of the chemical formula of inderite is Mg[B<sub>3</sub>O<sub>3</sub>(OH)<sub>5</sub>](H<sub>2</sub>O)<sub>4</sub>·H<sub>2</sub>O, rather than MgB<sub>3</sub>O<sub>3</sub>(OH)<sub>5</sub>·5H<sub>2</sub>O. All the thirteen independent oxygen sites of the structure are involved in H-bonding, as donors or as acceptors. This confirms the pervasive nature and the important role played by the H-bonding network on the structural stability of inderite. The differences between the crystal structure of the two dimorphs inderite and kurnakovite are discussed.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01281-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}