Physics and Chemistry of Minerals最新文献

筛选
英文 中文
In situ high-temperature behaviour and breakdown conditions of uvite at room pressure 常压下紫外光石的原位高温行为和击穿条件
IF 1.4 4区 地球科学
Physics and Chemistry of Minerals Pub Date : 2022-10-11 DOI: 10.1007/s00269-022-01216-3
Paolo Ballirano, Beatrice Celata, Ferdinando Bosi
{"title":"In situ high-temperature behaviour and breakdown conditions of uvite at room pressure","authors":"Paolo Ballirano,&nbsp;Beatrice Celata,&nbsp;Ferdinando Bosi","doi":"10.1007/s00269-022-01216-3","DOIUrl":"10.1007/s00269-022-01216-3","url":null,"abstract":"<div><p>The thermal behaviour of an uvite from San Piero in Campo (Elba Island, Italy) was investigated at room pressure through in situ high-temperature powder X-ray diffraction (PXRD), until the breakdown conditions were reached. The variation of uvite structural parameters (unit-cell parameters and mean bond distances) was monitored together with site occupancies and we observed the thermally induced Fe oxidation process counterbalanced by (OH)<sup>−</sup> deprotonation, which starts at 450 °C and is completed at 650 °C. The uvite breakdown reaction occurs between 800 and 900 °C. The breakdown products were identified at room temperature by PXRD and the breakdown reaction can be described as follows: tourmaline → indialite + yuanfuliite + plagioclase + “boron-mullite” phase + hematite.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 10","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01216-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4478466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Magnetic and structure transition of Mn3-xFexO4 solid solutions under high-pressure and high-temperature conditions 高压和高温条件下Mn3-xFexO4固溶体的磁性和结构转变
IF 1.4 4区 地球科学
Physics and Chemistry of Minerals Pub Date : 2022-10-11 DOI: 10.1007/s00269-022-01215-4
Takamitsu Yamanaka, Naohisa Hirao, Yuki Nakamoto, Takashi Mikouchi, Takanori Hattori, Kazuki Komatsu, Ho-kwang Mao
{"title":"Magnetic and structure transition of Mn3-xFexO4 solid solutions under high-pressure and high-temperature conditions","authors":"Takamitsu Yamanaka,&nbsp;Naohisa Hirao,&nbsp;Yuki Nakamoto,&nbsp;Takashi Mikouchi,&nbsp;Takanori Hattori,&nbsp;Kazuki Komatsu,&nbsp;Ho-kwang Mao","doi":"10.1007/s00269-022-01215-4","DOIUrl":"10.1007/s00269-022-01215-4","url":null,"abstract":"<div><p>Magnetic and structure transitions of Mn<sub>3–x</sub>Fe<sub>x</sub>O<sub>4</sub> solid solutions under extreme conditions are clarified by neutron time-of-flight scattering diffraction and X-ray Mössbauer measurement. The ferrimagnetic-to-paramagnetic transition temperature (100 °C) of Mn<sub>2</sub>FeO<sub>4</sub> spinel is different from the tetragonal-to-cubic structure transition temperature (180 °C). The structure transition temperature decreases with increasing pressure. The transition is not coupled with the magnetic transition. Synchrotron X-ray Mössbauer experiments have revealed the pressure effects on the distribution of Fe<sup>2+</sup> and Fe<sup>3+</sup> at the tetrahedral and octahedral sites in the spinel structure. Ferrimagnetic MnFe<sub>2</sub>O<sub>4</sub> and Mn<sub>2</sub>FeO<sub>4</sub> spinels show sextet spectral features with hyperfine structure elicited by internal magnetic fields. Cubic MnFe<sub>2</sub>O<sub>4</sub> spinel and tetragonal Mn<sub>2</sub>FeO<sub>4</sub> transform to high-pressure orthorhombic postspinel phase above pressures of 18.4 GPa and 14.0 GPa, respectively. The transition pressure decreases with increasing Mn content. The postspinel phase has a paramagnetic property. Mn<sub>2</sub>O<sub>10</sub> dimers of two octahedra are linked via common edge in three dimentional direction. The occupancy of Fe<sup>2+</sup> in the tatrahedral site is decreased with increasig pressure, indicating more oredered structure. Consequently, the inverse parameter of the spinel structure is increased with increasing pressure. The magnetic structure refinements clarify the paramagnetic and ferrimagnetic structure of MnFe<sub>2</sub>O<sub>4</sub> and Mn<sub>2</sub>FeO<sub>4</sub> spinel as a function of pressure. The magnetic moment is ordered between A and B sites with the anti-parallel distribution along the <i>b</i> axis. The nuclear tetragonal structure (<i>a</i><sub><i>N</i></sub>, <i>a</i><sub><i>N</i></sub>, <i>c</i><sub><i>N</i></sub>) has the ferrimagnetic structure but the orthorhombic magnetic structure has the ferrimagnetic structure with the lattice constants (<i>a</i><sub><i>M</i></sub>, <i>b</i><sub><i>M</i></sub>,<i> c</i><sub><i>M</i></sub>). The magnetic moment is ordered between A and B sites with the anti-parallel distribution along the <i>b</i><sub><i>M</i></sub> axis.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 10","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01215-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4778791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal genesis and growth of the banded agates from the Allumiere-Tolfa volcanic district (Latium, Italy) 意大利Latium Allumiere-Tolfa火山区带状玛瑙的热液成因和生长
IF 1.4 4区 地球科学
Physics and Chemistry of Minerals Pub Date : 2022-09-28 DOI: 10.1007/s00269-022-01214-5
Alessandra Conte, Giancarlo Della Ventura, Benjamin Rondeau, Martina Romani, Mariangela Cestelli Guidi, Carole La, Camilla Napoleoni, Federico Lucci
{"title":"Hydrothermal genesis and growth of the banded agates from the Allumiere-Tolfa volcanic district (Latium, Italy)","authors":"Alessandra Conte,&nbsp;Giancarlo Della Ventura,&nbsp;Benjamin Rondeau,&nbsp;Martina Romani,&nbsp;Mariangela Cestelli Guidi,&nbsp;Carole La,&nbsp;Camilla Napoleoni,&nbsp;Federico Lucci","doi":"10.1007/s00269-022-01214-5","DOIUrl":"10.1007/s00269-022-01214-5","url":null,"abstract":"<div><p>In this work, we studied the hydrothermal agates from the Neogene–Quaternary volcanic district of Allumiere-Tolfa, north-west of Rome (Latium, Italy) using a combination of micro-textural, spectroscopic, and geochemical data. The examined sample consists of (1) an outer cristobalite layer deposited during the early stages of growth, (2) a sequence of chalcedonic bands (including i.e., length-fast, zebraic, and minor length-slow chalcedony) with variable moganite content (up to ca. 48 wt%), (3) an inner layer of terminated hyaline quartz crystals. The textures of the various SiO<sub>2</sub> phases and their trace element content (Al, Li, B, Ti, Ga, Ge, As), as well as the presence of mineral inclusions (i.e., Fe-oxides and sulfates), is the result of physicochemical fluctuations of SiO<sub>2</sub>-bearing fluids. Positive correlation between Al and Li, low Al/Li ratio, and low Ti in hyaline quartz points to low-temperature hydrothermal environment. Local enrichment of B and As in chalcedony-rich layers are attributed to pH fluctuations. Analysis of the FT-IR spectra in the principal OH-stretching region (2750–3750 cm<sup>−1</sup>) shows that the silanol and molecular water signals are directly proportional. Strikingly, combined Raman and FT-IR spectroscopy on the chalcedonic bands reveals an anticorrelation between the moganite content and total water (SiOH + molH<sub>2</sub>O) signal. The moganite content is compatible with magmatic-hydrothermal sulfate/alkaline fluids at a temperature of 100–200 °C, whereas the boron-rich chalcedony can be favored by neutral/acidic conditions. The final Bambauer quartz growth lamellae testifies diluted SiO<sub>2</sub>-bearing solutions at lower temperature. These findings suggest a genetic scenario dominated by pH fluctuations in the circulating hydrothermal fluid.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 10","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01214-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5102616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Phase evolution and temperature-dependent behavior of averievite, Cu5O2(VO4)2(CuCl) and yaroshevskite, Cu9O2(VO4)4Cl2 阿维氏体Cu5O2(VO4)2(CuCl)和雅罗什夫氏体Cu9O2(VO4)4Cl2的相演化和温度依赖行为
IF 1.4 4区 地球科学
Physics and Chemistry of Minerals Pub Date : 2022-08-24 DOI: 10.1007/s00269-022-01213-6
Victoria A. Ginga, Oleg I. Siidra, Vera A. Firsova, Dmitri O. Charkin, Valery L. Ugolkov
{"title":"Phase evolution and temperature-dependent behavior of averievite, Cu5O2(VO4)2(CuCl) and yaroshevskite, Cu9O2(VO4)4Cl2","authors":"Victoria A. Ginga,&nbsp;Oleg I. Siidra,&nbsp;Vera A. Firsova,&nbsp;Dmitri O. Charkin,&nbsp;Valery L. Ugolkov","doi":"10.1007/s00269-022-01213-6","DOIUrl":"10.1007/s00269-022-01213-6","url":null,"abstract":"<div><p>The exhalation copper oxychloride vanadates attract increasing interest in the fields of both physics and chemistry. Based on the results of HT X-ray diffraction study of synthetic analogs of averievite (<b>1</b>) and yaroshevskite (<b>2</b>) and products of their thermal decomposition in air within the temperature range from 25 °C to 800 °C, it was found that <b>1</b> is stable up to 500 °C, and <b>2</b> is stable up to 480 °C. Both copper oxychloride vanadates expand anisotropically, but exhibit completely different thermal expansion patterns. <b>1</b> demonstrates an expansion in the direction perpendicular to the [O<sub>2</sub>Cu<sub>5</sub>]<sup>6+</sup> layers, but inside the layer, the expansion is isotropic. The thermal expansion of <b>2</b> is much more anisotropic. The compression direction α<sub>33</sub> is close to the <i>c</i> axis, along which the structure tends to align the chains [O<sub>2</sub>Cu<sub>6</sub>]<sup>8+</sup> into positions they would occupy in the layers [O<sub>2</sub>Cu<sub>5</sub>]<sup>6+</sup> of the kagome type which exist in averievite. Meanwhile, the expansion direction <i>α</i><sub>11</sub> is close to the <i>a</i> axis, along which the [O<sub>2</sub>Cu<sub>6</sub>]<sup>8+</sup> chains shift tending to arrange as fragments of [O<sub>2</sub>Cu<sub>5</sub>]<sup>6+</sup> layers. The thermal decomposition proceeds with loss of chlorine (most likely, both via hydrolysis/oxidation and evaporation of copper halides) and formation of copper vanadates.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 9","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4923084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overview of HPCAT and capabilities for studying minerals and various other materials at high-pressure conditions HPCAT概述和在高压条件下研究矿物和各种其他材料的能力
IF 1.4 4区 地球科学
Physics and Chemistry of Minerals Pub Date : 2022-08-15 DOI: 10.1007/s00269-022-01209-2
Arunkumar Bommannavar, Paul Chow, Rich Ferry, Rostislav Hrubiak, Freda Humble, Curtis Kenney-Benson, Mingda Lv, Yue Meng, Changyong Park, Dmitry Popov, Eric Rod, Maddury Somayazulu, Guoyin Shen, Dean Smith, Jesse Smith, Yuming Xiao, Nenad Velisavljevic
{"title":"Overview of HPCAT and capabilities for studying minerals and various other materials at high-pressure conditions","authors":"Arunkumar Bommannavar,&nbsp;Paul Chow,&nbsp;Rich Ferry,&nbsp;Rostislav Hrubiak,&nbsp;Freda Humble,&nbsp;Curtis Kenney-Benson,&nbsp;Mingda Lv,&nbsp;Yue Meng,&nbsp;Changyong Park,&nbsp;Dmitry Popov,&nbsp;Eric Rod,&nbsp;Maddury Somayazulu,&nbsp;Guoyin Shen,&nbsp;Dean Smith,&nbsp;Jesse Smith,&nbsp;Yuming Xiao,&nbsp;Nenad Velisavljevic","doi":"10.1007/s00269-022-01209-2","DOIUrl":"10.1007/s00269-022-01209-2","url":null,"abstract":"<div><p>High-Pressure Collaborative Access Team (HPCAT) is a synchrotron-based facility located at the Advanced Photon Source (APS). With four online experimental stations and various offline capabilities, HPCAT is focused on providing synchrotron x-ray capabilities for high pressure and temperature research and supporting a broad user community. Overall, the array of online/offline capabilities is described, including some of the recent developments for remote user support and the concomitant impact of the current pandemic. General overview of work done at HPCAT and with a focus on some of the minerals relevant work and supporting capabilities is also discussed. With the impending APS-Upgrade (APS-U), there is a considerable effort within HPCAT to improve and add capabilities. These are summarized briefly for each of the end-stations.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 9","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01209-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4596344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Equations of state of clino- and orthoenstatite and phase relations in the MgSiO3 system at pressures up to 12 GPa and high temperatures 高温下MgSiO3体系中斜长辉石和正长辉石的状态方程及相关系
IF 1.4 4区 地球科学
Physics and Chemistry of Minerals Pub Date : 2022-08-15 DOI: 10.1007/s00269-022-01212-7
Tatiana S. Sokolova, Peter I. Dorogokupets, Alena I. Filippova
{"title":"Equations of state of clino- and orthoenstatite and phase relations in the MgSiO3 system at pressures up to 12 GPa and high temperatures","authors":"Tatiana S. Sokolova,&nbsp;Peter I. Dorogokupets,&nbsp;Alena I. Filippova","doi":"10.1007/s00269-022-01212-7","DOIUrl":"10.1007/s00269-022-01212-7","url":null,"abstract":"<div><p>The equations of state of MgSiO<sub>3</sub>-pyroxenes (low-pressure clinoenstatite, orthoenstatite and high-pressure clinoenstatite) are constructed using a thermodynamic model based on the Helmholtz free energy and optimization of known experimental measurements and calculated data for these minerals. The obtained equations of state allow us to calculate a full set of thermodynamic and thermoelastic properties as depending on <i>T–P</i> or <i>T–V</i> parameters. We offer open working MS Excel spreadsheets for calculations, which are a convenient tool for solving various user’s tasks. The phase relations in the MgSiO<sub>3</sub> system are calculated based on the estimated Gibbs energy for studied MgSiO<sub>3</sub>-pyroxenes and clarify other calculated data at pressures up to 12 GPa and temperatures up to 2000 K. The obtained orthoenstatite → high-pressure clinoenstatite phase boundary corresponds to the following equation <i>P</i>(GPa) = 0.0021 × <i>T</i>(K) + 4.2. The triple point of equilibrium is determined at 1100 K and 6.5 GPa. Isotropic compressional (<i>P</i>) and shear (<i>S</i>) wave velocities of orthoenstatite and high-pressure clinoenstatite at different pressures are calculated based on the obtained equations of state. The calculated jumps of <i>P</i>- and <i>S</i>-wave velocities of orthoenstatite → high-pressure clinoenstatite phase transition at a pressure of ~ 9 GPa are 0.7 and 5.1%, respectively. The calculated jump of the density of this phase transition at a pressure of 8 GPa, which corresponds to the depth of ~ 250 km, is 2.9%. These results are used to discuss the location of the seismic X-discontinuity at the depths of 250–340 km, which is associated with phase boundaries in enstatite.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 9","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01212-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4596340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Phase transitions and compressibility of alkali-bearing double carbonates at high pressures: a first-principles calculations study 高压下含碱双碳酸盐的相变和可压缩性:第一性原理计算研究
IF 1.4 4区 地球科学
Physics and Chemistry of Minerals Pub Date : 2022-08-02 DOI: 10.1007/s00269-022-01210-9
Bingxu Hou, Shengxuan Huang, Shan Qin
{"title":"Phase transitions and compressibility of alkali-bearing double carbonates at high pressures: a first-principles calculations study","authors":"Bingxu Hou,&nbsp;Shengxuan Huang,&nbsp;Shan Qin","doi":"10.1007/s00269-022-01210-9","DOIUrl":"10.1007/s00269-022-01210-9","url":null,"abstract":"<div><p>Here, we investigated high-pressure behaviors of four end-members of K-Na-Ca-Mg alkali-bearing double carbonates (K<sub>2</sub>Mg(CO<sub>3</sub>)<sub>2</sub>, K<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>, Na<sub>2</sub>Mg(CO<sub>3</sub>)<sub>2</sub>, and Na<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>) using first-principles calculations up to ~ 25 GPa. For K<sub>2</sub>Mg, K<sub>2</sub>Ca, and Na<sub>2</sub>Mg double carbonates, the transitions from rhombohedral structures (<i>R</i> <span>(stackrel{mathrm{-}}{3})</span> <i>m</i> or <i>R</i> <span>(stackrel{mathrm{-}}{3})</span>) to monoclinic (<i>C</i>2/<i>m</i>) or triclinic (<i>P</i> <span>(stackrel{mathrm{-}}{1})</span>) structures are predicted. While for Na<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>, the <i>P</i>2<sub>1</sub><i>ca</i> structure remains stable across the calculated pressure range. But the high-pressure behavior of Na<sub>2</sub>Ca double carbonate has changed over 8 GPa: the <i>b</i>-axis becomes more compressible than <i>a</i>-axis; [CO<sub>3</sub>] –I groups tilt out of the <i>a</i>-<i>b</i> plane upon compression and reverse the direction of rotation at 8 GPa. The parameters for the equations of state of these minerals and their high-pressure phases were all theoretically determined. The predicted transformation is driven by the differences in the compressibility of structural units. The K<sup>+</sup> and Na<sup>+</sup> coordination polyhedra are more compressible in the structure, compared with the high axial rigidity of C–O bonds in the [CO<sub>3</sub>] triangle along the <i>a-b</i> plane. Our results provide projections of the high-pressure behaviors of trigonal double carbonates, in part by helping to clarify the relation among the average metallic ionic radius (<i>R</i><sub>avg</sub>), the bulk modulus (<i>K</i><sub>0</sub>), and the transition pressure (<i>P</i><sub>T</sub>). The transition pressure (<i>P</i><sub>T</sub>) is anticorrelated to the average metallic ionic radius (<i>R</i><sub>avg</sub>), and a larger <i>R</i><sub>avg</sub> results in a lower bulk modulus (<i>K</i><sub>0</sub>) for the trigonal double carbonates. Furthermore, alkali-bearing double carbonates found as inclusions in the natural diamond may indicate a hydrous parental medium composition and a deeper genesis mechanism.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 8","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46826349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-pressure Cr3+ R-line luminescence of zoisite and kyanite: a probe of octahedral site distortion 黝帘石和蓝晶石的高压Cr3+ r线发光:八面体位畸变的探测
IF 1.4 4区 地球科学
Physics and Chemistry of Minerals Pub Date : 2022-08-02 DOI: 10.1007/s00269-022-01211-8
Earl F. O’Bannon III, Quentin Williams
{"title":"High-pressure Cr3+ R-line luminescence of zoisite and kyanite: a probe of octahedral site distortion","authors":"Earl F. O’Bannon III,&nbsp;Quentin Williams","doi":"10.1007/s00269-022-01211-8","DOIUrl":"10.1007/s00269-022-01211-8","url":null,"abstract":"<div><p>The Cr<sup>3+</sup> luminescence spectra of zoisite and kyanite, two geologically important minerals, were studied up to 40 and 20 GPa, respectively, in various pressure media. Cr<sup>3+</sup> substitutes into the octahedral aluminum sites in both minerals and the R-line luminescence is a particularly sensitive site-specific probe of the octahedral Al site. Unlike many previous studies where Cr<sup>3+</sup> luminescence was utilized, both these minerals have multiple highly distorted octahedral sites resulting in very large splitting of their R-lines, ~ 300 cm<sup>−1</sup> in zoisite and ~ 360 cm<sup>−1</sup> in kyanite (for reference, ruby is 29 cm<sup>−1</sup>). For zoisite, the R-line splitting increases as pressure increases and more than triples from its ambient value by 40 GPa, while the R-line splitting in kyanite from the M1 and M2 sites does not change when compressed in a Ne pressure medium up to 20 GPa. We do not observe evidence of any phase transitions in either zoisite or kyanite across the pressure range of these new luminescence measurements. We present some high-pressure luminescence results where kyanite was known to be bridged between the diamond anvils and show how these spectra illustrate the different effect of uniaxial relative to hydrostatic stress on luminescence spectra.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 8","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48204795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
GeoSoilEnviroCARS (Sector 13) at the Advanced Photon Source: a comprehensive synchrotron radiation facility for Earth science research at ambient and extreme conditions 先进光子源的GeoSoilEnviroCARS(第13区):用于环境和极端条件下地球科学研究的综合同步辐射设施
IF 1.4 4区 地球科学
Physics and Chemistry of Minerals Pub Date : 2022-07-26 DOI: 10.1007/s00269-022-01207-4
S. R. Sutton, M. L. Rivers, S. Chariton, P. J. Eng, A. Lanzirotti, M. Newville, T. Officer, V. B. Prakapenka, Y. J. Ryu, J. E. Stubbs, S. Tkachev, Y. Wang, A. Wanhala, J. Xu, M. Xu, T. Yu, D. Zhang
{"title":"GeoSoilEnviroCARS (Sector 13) at the Advanced Photon Source: a comprehensive synchrotron radiation facility for Earth science research at ambient and extreme conditions","authors":"S. R. Sutton,&nbsp;M. L. Rivers,&nbsp;S. Chariton,&nbsp;P. J. Eng,&nbsp;A. Lanzirotti,&nbsp;M. Newville,&nbsp;T. Officer,&nbsp;V. B. Prakapenka,&nbsp;Y. J. Ryu,&nbsp;J. E. Stubbs,&nbsp;S. Tkachev,&nbsp;Y. Wang,&nbsp;A. Wanhala,&nbsp;J. Xu,&nbsp;M. Xu,&nbsp;T. Yu,&nbsp;D. Zhang","doi":"10.1007/s00269-022-01207-4","DOIUrl":"10.1007/s00269-022-01207-4","url":null,"abstract":"<div><p>GeoSoilEnviroCARS (GSECARS) is a comprehensive analytical laboratory for Earth and environmental science research using X-ray beams from the Advanced Photon Source, Argonne National Laboratory. State-of-the-art instruments are available for (1) high-pressure/high- or low-temperature diffraction, total scattering, and spectroscopy (Brillouin, Raman, and VIS-IR) using the laser heated diamond anvil cell (DAC); (2) high-pressure/high-temperature diffraction, scattering, and imaging as well as acoustic emission (AE) and ultrasonics using the large-volume press (LVP); (3) powder, single crystal, and surface/interface diffraction; (4) X-ray absorption fine structure spectroscopy; (5) X-ray fluorescence microprobe analysis; and (6) microtomography. Experiments are facilitated by senior level staff who collaborate on all aspects of the analytical work including experiment design, sample preparation, data collection, data interpretation, and publication preparation. Both technical and scientific synergies occur as a result of the intimate association of the various techniques and scientists experienced in the applications of synchrotron radiation to Earth, environmental, and planetary science problems. The facility includes state-of-the-art instrumentation designed and built in-house, including custom X-ray optics, online and offline laser-based systems, specialized sample environments and positioning systems, as well as pixel-array and multi-crystal energy dispersive X-ray detectors, which are available to be shared among the experimental stations.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 8","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48478254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Atomic and microstructural origin of banded colours in purple-blue variety of agate from Yozgat Province, Turkey 土耳其尤兹加特省紫蓝色玛瑙带状颜色的原子和微观结构来源
IF 1.4 4区 地球科学
Physics and Chemistry of Minerals Pub Date : 2022-07-26 DOI: 10.1007/s00269-022-01208-3
Roberto Lorenzi, Andrea Zullino, Valentina Gagliardi, Loredana Prosperi, Alberto Paleari, Ilaria Adamo
{"title":"Atomic and microstructural origin of banded colours in purple-blue variety of agate from Yozgat Province, Turkey","authors":"Roberto Lorenzi,&nbsp;Andrea Zullino,&nbsp;Valentina Gagliardi,&nbsp;Loredana Prosperi,&nbsp;Alberto Paleari,&nbsp;Ilaria Adamo","doi":"10.1007/s00269-022-01208-3","DOIUrl":"10.1007/s00269-022-01208-3","url":null,"abstract":"<div><p>Agates from Yozgat province are appreciated on the gem market for their white and purple-blue banded colours. In this study, we present a detailed investigation aimed at the identification of the atomic and structural origin of this peculiar colouration of chalcedony. X-ray diffraction and Raman spectroscopy revealed the presence of fine grains of quartz and moganite with a preferential accumulation of the latter in the blue bands. Near-infrared diffuse absorption spectra show overtones of hydroxyls vibrations at 1425, 1900, and 2250 nm. In the visible, the broad absorption at about 500 nm, as well as its behaviour at low temperatures, is compatible with the optical activity of iron impurities in quartz matrices, such as that observed in amethysts. Peak intensities and shapes are very similar for spectra collected in blue and white bands. Accordingly, trace-element composition from laser ablation inductively coupled mass spectrometry confirmed that the two regions have similar Fe content. The perceived changes in band colours are indeed originated by differences in microstructural arrangement and size of the grains visualised through scanning electron microscopy. White and blue stripes have grains of about 5 µm and 300 nm in size, respectively, resulting in an accentuated scattering component for the white bands. Therefore, the unique purple-blue shades typical of Yozgat agates are a combination of iron-related colour centres and scattering effect.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 8","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01208-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43587407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信