David M. Jenkins, Jared P. Matteucci, Alexander J. Kerstanski, Johannes Hammerli, Katherine S. Shanks, Zhongwu Wang
{"title":"Thermophysical properties of synthetic marialite","authors":"David M. Jenkins, Jared P. Matteucci, Alexander J. Kerstanski, Johannes Hammerli, Katherine S. Shanks, Zhongwu Wang","doi":"10.1007/s00269-024-01307-3","DOIUrl":"10.1007/s00269-024-01307-3","url":null,"abstract":"<div><p>Marialite (Na<sub>3</sub>Al<sub>3</sub>Si<sub>9</sub>O<sub>24</sub>·NaCl) represents a key end-member of the scapolite mineral group because it has the potential for revealing the chloride content of the paleofluid from which it formed. Here we provide measurements of the basic thermophysical properties of synthetic marialite which do not currently exist and which complement similar data for calcium-carbonate-bearing scapolites. Synthetic marialite was made from reagent oxides and NaCl treated at 1050 °C and 1.7 GPa for 48–120 h. Average unit-cell dimensions for synthetic marialite at 298 K and 1 atm are <i>a</i><sub>o</sub> = 12.038 ± 0.002 Å, <i>c</i><sub>o</sub> = 7.539 ± 0.004 Å, and <i>V</i><sub>o</sub> = 1092.6 ± 0.8 Å<sup>3</sup>, with a molar volume of 328.99 ± 0.24 cm<sup>3</sup>/mole. Thermal expansion measurements were made at 1 atm from 298–1105 K and showed that <i>a</i> increases while <i>c</i> decreases with an overall increase in volume upon heating. Compressibility measurements were made at room temperature in a diamond-anvil cell using 4:1 methanol: ethanol pressure medium in transmission mode at the Cornell High Energy Synchrotron Source facility with pressures ranging from 1 atm to 9.6 GPa. The <i>a</i> dimension is more compressible than <i>c</i> up to ~ 5 GPa, beyond which there is noticeable softening along the <i>c</i> axis. Equation of state modeling was done on the combined pressure–temperature-volume data using a Tait equation of state yielding bulk modulus and thermal expansion values for <i>K</i><sub>o</sub>, <i>K’</i>, and <i>α</i> of 51.0 ± 2.0 GPa, 6.68 ± 0.83, and 2.75 ± 0.17 × 10<sup>–5</sup>/K, respectively. Compared with other scapolite data in the literature, the marialite (Na<sub>3</sub>Al<sub>3</sub>Si<sub>9</sub>O<sub>24</sub>·NaCl)-meionite (Ca<sub>3</sub>Al<sub>6</sub>Si<sub>6</sub>O<sub>24</sub>·CaCO<sub>3</sub>) join behaves similarly to the albite-anorthite plagioclase join, with end-member marialite having the highest thermal expansion and lowest bulk modulus along the compositional join.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Key phase diagram experiment of the ZnO-SnO2 system and thermodynamic modeling of the ZnO-SnO2-TiO2 system","authors":"Jaesung Lee, Yoongu Kang, In-Ho Jung","doi":"10.1007/s00269-024-01308-2","DOIUrl":"10.1007/s00269-024-01308-2","url":null,"abstract":"<div><p>The phase diagram of the ZnO-SnO<sub>2</sub> system at 800–1600 °C was experimentally investigated using the classical equilibration/quenching method and differential thermal analysis (DTA) followed by X-ray diffraction (XRD) phase analysis and electron probe micro-analysis (EPMA). Sealed platinum capsules were employed to prevent the evaporation of ZnO and SnO<sub>2</sub> in the experiments. Based on new experimental phase diagram data and all available data in literatures, the binary ZnO-SnO<sub>2</sub>, SnO<sub>2</sub>-TiO<sub>2</sub>, and ZrO<sub>2</sub>-TiO<sub>2</sub> and the ternary ZnO-SnO<sub>2</sub>-TiO<sub>2</sub> system was thermodynamically optimized using the CALculation of PHAse Diagram (CALPHAD) method to prepare a set of Gibbs energies of all phases within the binary systems which can be utilized to predict unknown phase equilibria and thermodynamic properties in the system.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fundamentals on dependence of volume on pressure and temperature","authors":"Zi-Kui Liu","doi":"10.1007/s00269-024-01305-5","DOIUrl":"10.1007/s00269-024-01305-5","url":null,"abstract":"<div><p>The common wisdom that volume decreases with pressure and increases with temperature is analyzed in terms of Hillert nonequilibrium thermodynamics in the present work. It is shown that the derivative of volume to pressure in a stable system is always negative, i.e., volume decreases with the increase of pressure, when all other natural variables of the system are kept constant. This originates from the stability requirement that the conjugate variables, such as volume and negative pressure, must change in the same direction in a stable system. Consequently, since volume and temperature are not conjugate variables, they do not have to change in the same direction and thus do change in opposite directions in both natural and man-made systems. It is shown that the decrease of volume with the increase of temperature, commonly referred as negative thermal expansion (NTE) in the literature, originates from the statistical competitions of configurations in the system when the volumes of metastable configurations are smaller than that of the ground-state configuration. It is demonstrated that the zentropy theory can concisely explain and accurately predict NTE based on the density functional theory without fitting parameters.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermodynamic modeling of the Mn–Si–O system","authors":"D. A. de Abreu, O. Fabrichnaya","doi":"10.1007/s00269-024-01302-8","DOIUrl":"10.1007/s00269-024-01302-8","url":null,"abstract":"<div><p>In this study, the thermodynamic parameters of the Mn–Si–O system were re-evaluated using the CALPHAD approach. Available experimental data on phase equilibria were taken into account and thermodynamic properties such as heat capacity, standard entropy and standard enthalpy were reproduced within uncertainties. Three ternary compounds are found to be stable in the Mn–Si–O system: rhodonite (MnSiO<span>(_3)</span>), braunite (Mn<span>(_7)</span>SiO<span>(_{12})</span>) and tephroite (Mn<span>(_2)</span>SiO<span>(_4)</span>). Braunite was modeled by CEF, while tephroite and rhodonite were modeled as stoichiometric compounds. Two-sublattice partially ionic liquid model was used to describe the liquid phase. The braunite phase exhibits a homogeneity range and can dissolve Mn<span>(_2)</span>O<span>(_3)</span> in some extension. Phase diagrams for the MnO–SiO<span>(_2)</span> system in the presence of metallic Mn and the MnO<span>(_x)</span>–SiO<span>(_2)</span> system in air were calculated and showed good agreement with existing literature data. The thermodynamic parameters were evaluated to describe the experimental data over the entire compositional range of the system.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01302-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dmitry S. Tsvetkov, Dmitry A. Malyshkin, Vladimir V. Sereda, Ivan L. Ivanov, Nadezhda S. Tsvetkova, Andrey Yu. Zuev
{"title":"High-temperature thermodynamic properties of Y-doped barium zirconates, BaZr1–xYxO3−x/2 (x = 0.1, 0.2), with perovskite-type structure","authors":"Dmitry S. Tsvetkov, Dmitry A. Malyshkin, Vladimir V. Sereda, Ivan L. Ivanov, Nadezhda S. Tsvetkova, Andrey Yu. Zuev","doi":"10.1007/s00269-024-01304-6","DOIUrl":"10.1007/s00269-024-01304-6","url":null,"abstract":"<div><p>Perovskite-type oxides BaZr<sub>1–<i>x</i></sub>Y<sub><i>x</i></sub>O<sub>3−x/2</sub> (<i>x</i> = 0.1, 0.2) were synthesized and their enthalpy increments were measured by means of high-temperature drop calorimetry in the temperature range of (373–1273) K in air. The data obtained were used for estimating the high-temperature thermodynamic functions (constant pressure heat capacity and entropy increments) of the zirconates BaZr<sub>1–<i>x</i></sub>Y<sub><i>x</i></sub>O<sub>3−x/2</sub> (<i>x</i> = 0.1, 0.2). They were found to be only weakly dependent on the concentration of Y-dopant. Thermal expansion coefficient of zirconates BaZr<sub>1–<i>x</i></sub>Y<sub><i>x</i></sub>O<sub>3−x/2</sub> (<i>x</i> = 0.1, 0.2) was successfully estimated by Grüneisen equation. Also, Neumann-Kopp rule was shown to be inapplicable for accurate estimation of heat capacities of the studied oxides. Thermodynamic analysis showed that BaZr<sub>1–<i>x</i></sub>Y<sub><i>x</i></sub>O<sub>3−x/2</sub> (<i>x</i> = 0.1, 0.2) oxides are prone to chemical interaction with CO<sub>2</sub> at typical working temperatures of proton-conducting solid oxide fuel cells. Some possibilities to overcome this issue have been discussed.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Etienne Balan, Michael C. Jollands, Maxime Guillaumet, Keevin Béneut
{"title":"Temperature-dependent infrared spectroscopy of OH defects in Verneuil-grown corundum (α-Al2O3)","authors":"Etienne Balan, Michael C. Jollands, Maxime Guillaumet, Keevin Béneut","doi":"10.1007/s00269-024-01301-9","DOIUrl":"10.1007/s00269-024-01301-9","url":null,"abstract":"<div><p>The temperature dependence of the infrared absorption spectra of two Verneuil-grown corundum samples is investigated in the OH stretching range. The spectra display three main bands at 3184, 3232 and 3309 cm<sup>− 1</sup>, belonging to the so-called “3309 cm<sup>− 1</sup> series”, as well as two additional bands at 3163 and 3278 cm<sup>− 1</sup> previously reported in some synthetic corundum samples. The anharmonic behavior of the observed bands is analyzed using the pure dephasing model of Persson and Ryberg and depends on the local geometry of the OH defects, which are all associated with Al vacancies. The unexpected increase with temperature in the absorbance of a weak band at 3209 cm<sup>− 1</sup> supports a revised interpretation of both the 3209 and 3232 cm<sup>− 1</sup> bands. These two bands are interpreted as resulting from the low-temperature equilibrium between two Ti-associated OH defects, enabled by the possibility of hydrogen hopping within the Al vacancy. The temperature-dependent properties of the 3278 cm<sup>− 1</sup> band are similar to those of the other Al-vacancy related defects and a comparison with the theoretical properties of selected OH defects suggests that this band corresponds to the association of the H atom with a non-dissociated Al Frenkel pair. Finally, the properties of the band at 3163 cm<sup>− 1</sup> are consistent with its previously proposed association with Si for Al substitution in corundum.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander F. Redkin, Andrey M. Ionov, Alexey N. Nekrasov, Andrey D. Podobrazhnykh, Rais N. Mozhchil
{"title":"Interaction of platinum with antimony-bearing compounds in NaF fluids at 800 °C and 200 MPA","authors":"Alexander F. Redkin, Andrey M. Ionov, Alexey N. Nekrasov, Andrey D. Podobrazhnykh, Rais N. Mozhchil","doi":"10.1007/s00269-024-01299-0","DOIUrl":"10.1007/s00269-024-01299-0","url":null,"abstract":"<div><p>Studies conducted in NaF-containing hydrothermal fluids have shown that the oxide compounds Sb<sup>5+</sup> are unstable at 800 °C, <i>Р</i><sub>total</sub> = 200 MPa and <i>f</i>O<sub>2</sub> (<i>f</i>H<sub>2</sub>) specified by Co–CoO and Ni–NiO buffers interact with the Pt material of the ampoule, forming antimony intermetallics with platinum on the inner surface of the ampoule. The formation of the following intermetallics was established through the analysis of data obtained from studies conducted on an electronic microscope: Pt<sub>90.3±0.8</sub>Sb<sub>9.7</sub> (~ Pt<sub>10</sub>Sb), Pt<sub>82.8±1.3</sub>Sb<sub>17.2</sub> (~ Pt<sub>5</sub>Sb) and Pt<sub>69.2±4.4</sub>Sb<sub>30.8</sub>. Pt<sub>10</sub>Sb compound which was obtained on the inner surface of the Pt ampoule is the limiting solid solution of antimony in platinum at 800 °C. It exhibits a cubic crystal system <span>(Fmoverline{3}m)</span> with a lattice constant of <i>a</i> = 3.943(3) Å and forms an underdeveloped surface < 111>. Pt<sub>5</sub>Sb compound, presumably hexagonal <i>P</i>6/<i>mmm</i> crystal system with unit cell parameters <i>a</i> = <i>b</i> = 4.56(4), <i>c</i> = 4.229(2) Å, <i>α</i> = <i>β</i> = 90°, <i>γ</i> = 120°, forms a thin film (≤ 10 μm) on the Pt surface and appears to be a metastable phase. The intermetallic compound of Pt<sub>69</sub>Sb<sub>31</sub> is a rapidly cooled melt of appropriate composition.</p><p>A mechanism for deep penetration of Sb into the walls of the Pt ampoule is proposed.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuqing Yin, Leonid Dubrovinsky, Andrey Aslandukov, Alena Aslandukova, Timofey Fedotenko, Konstantin Glazyrin, Gaston Garbarino, Igor A. Abrikosov, Natalia Dubrovinskaia
{"title":"High-pressure synthesis of rhenium carbide Re3C under megabar compression","authors":"Yuqing Yin, Leonid Dubrovinsky, Andrey Aslandukov, Alena Aslandukova, Timofey Fedotenko, Konstantin Glazyrin, Gaston Garbarino, Igor A. Abrikosov, Natalia Dubrovinskaia","doi":"10.1007/s00269-024-01300-w","DOIUrl":"10.1007/s00269-024-01300-w","url":null,"abstract":"<div><p>The rhenium carbide Re<sub>3</sub>C was predicted to be stable under high pressure and expected to have high hardness and low compressibility. In this study, we realise the synthesis of Re<sub>3</sub>C at megabar pressures of 105(3) and 140(5) GPa in laser-heated diamond anvil cells and characterise its structure using synchrotron single-crystal X-ray diffraction. The structure of Re<sub>3</sub>C has the monoclinic space group <i>C</i>2/<i>m</i> and is built of CRe<sub>7</sub> capped octahedra. Our combined ab initio calculations and quantitative topological analysis support experimental structural data and further deepen the understanding of the chemical bonding in the newly synthesized compound.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01300-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Kurnosov, G. Criniti, T. Boffa Ballaran, H. Marquardt, D. J. Frost
{"title":"High pressure and high temperature Brillouin scattering measurements of pyrope single crystals using flexible CO2 laser heating systems","authors":"A. Kurnosov, G. Criniti, T. Boffa Ballaran, H. Marquardt, D. J. Frost","doi":"10.1007/s00269-024-01297-2","DOIUrl":"10.1007/s00269-024-01297-2","url":null,"abstract":"<div><p>Single-crystal Brillouin scattering measurements are important for interpreting seismic velocities within the Earth and other planetary interiors. These measurements are rare, however, at temperatures above 1000 K, due to the fact that the transparent samples cannot be heated by common laser heating systems operating at a wavelength on the order of 1 μm. Here we present Brillouin scattering data on pyrope collected at pressures up to 23.8 GPa and temperatures between 850 and 1900 K using a novel CO<sub>2</sub> laser heating system confined in either a flexible hollow silica waveguide or an articulated arm with mirrors mounted in each junction to direct the laser to the exit point. Pyrope has been chosen because it has been extensively studied at high pressures and moderate temperatures and therefore it is an excellent sample for bench-marking the CO<sub>2</sub> laser heating system. The new high-temperature velocity data collected in this study allow the room pressure thermal parameters of pyrope to be constrained more tightly, resulting in values that reproduce the temperature dependence of the unit-cell volume of pyrope measured in recent studies at ambient pressure. Aggregate wave velocities of pyrope calculated along an adiabat using the thermoelastic parameters determined in this study are larger than those obtained using published values, implying that velocities for many mantle components may be underestimated at mantle temperatures because high temperature experimental data are lacking.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01297-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermodynamics of the α-FeOOH (goethite)-ScOOH solid solution","authors":"Juraj Majzlan","doi":"10.1007/s00269-024-01298-1","DOIUrl":"10.1007/s00269-024-01298-1","url":null,"abstract":"<div><p>Scandium (Sc) is a rare element that finds uses in modern technologies. Thermodynamic properties of Sc phases could help in the development of innovative technologies to extract Sc from mining waste. In this work, we investigated the FeOOH–ScOOH solid solution with the goethite structure. The end members and five intermediate compositions were synthesized and characterized. The lattice parameters show that the solid solution is non-ideal, with complex behavior induced by the Fe–Sc substitution. The excess unit-cell volume deviates negatively for the Sc-rich region, and positively for the Fe-rich region from the ideal behavior (Vegard’s law). Enthalpies of dissolution were determined by acid-solution calorimetry in 5 mol<span>(cdot hbox {dm}^{-3})</span> HCl at <i>T</i> = 343.15 K. Enthalpies of mixing (<span>(Delta _{mix}H)</span>), calculated from the experimental data, are small and positive. The available data allow for fitting the data as <span>(Delta _{mix}H = W x (1-x))</span>, with the mixing parameter <span>(W = 15.2pm)</span>1.0 kJ<span>(cdot hbox {mol}^{-1})</span>. Using <span>(Delta _fG^o)</span> of ScOOH from earlier literature, we calculated a Lippmann diagram that shows that Sc should strongly partition into the aqueous phase upon goethite precipitation. The field observations from lateritic profiles show that Sc is primarily harbored by goethite <i>via</i> adsorption. It seems that under weathering conditions, thermodynamically driven partitioning of <span>(hbox {Sc}^{3+})</span> into the aqueous phases and its subsequent adsorption onto goethite surfaces controls the mobility of Sc in the weathering profiles.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01298-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}