用原位同步x射线衍射得到高压下FeTiO3和MgTiO3的状态方程

IF 1.6 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kai Wang, Jingui Xu, Shanrong Zhang, Qifa Zhong, Wei Zhao, Dawei Fan
{"title":"用原位同步x射线衍射得到高压下FeTiO3和MgTiO3的状态方程","authors":"Kai Wang,&nbsp;Jingui Xu,&nbsp;Shanrong Zhang,&nbsp;Qifa Zhong,&nbsp;Wei Zhao,&nbsp;Dawei Fan","doi":"10.1007/s00269-025-01324-w","DOIUrl":null,"url":null,"abstract":"<div><p>The equation of state of ilmenite (FeTiO<sub>3</sub>) and geikielite (MgTiO<sub>3</sub>) have been investigated using in situ synchrotron X-ray diffraction at high pressures up to ~ 21.8 GPa and ~ 23.0 GPa, respectively. No phase transitions were observed within the experimental pressure ranges for both samples. The pressure-volume data were fitted using the third-order Birch-Murnaghan equation of state (EoS), yielding the following results: for FeTiO<sub>3</sub>, the zero-pressure unit-cell volume <i>V</i><sub>0</sub> = 312.2(1) Å<sup>3</sup>, the zero-pressure bulk modulus <i>K</i><sub>0</sub> = 165(4) GPa, and its pressure derivative <i>K</i>′<sub>0</sub> = 6.6(6); for MgTiO<sub>3</sub>, <i>V</i><sub>0</sub> = 304.17(8) Å<sup>3</sup>, <i>K</i><sub>0</sub> = 157(3) GPa, and <i>K</i>′<sub>0</sub> = 7.3(4). Additionally, the axial compressional behavior of FeTiO<sub>3</sub> and MgTiO<sub>3</sub> were also fitted with a linearized third-order Birch-Murnaghan EoS. The axial compressibility coefficients for FeTiO<sub>3</sub> along the <i>a-</i> and <i>c-</i>axes are <i>β</i><sub><i>a</i></sub> = 1.43(4) × 10<sup>− 3</sup> GPa<sup>-1</sup> and <i>β</i><sub><i>c</i></sub> = 3.17(11) × 10<sup>− 3</sup> GPa<sup>-1</sup>, respectively, with an anisotropic ratio of <i>β</i><sub><i>a</i></sub>: <i>β</i><sub><i>c</i></sub> = 0.45: 1.00, while <i>β</i><sub><i>a</i></sub> = 1.76 (7) × 10<sup>− 3</sup> GPa<sup>-1</sup> and <i>β</i><sub><i>c</i></sub> = 2.61(7) × 10<sup>− 3</sup> GPa<sup>-1</sup> with an anisotropic ratio of <i>β</i><sub><i>a</i></sub>: <i>β</i><sub><i>c</i></sub> = 0.67: 1.00 for MgTiO<sub>3</sub>. Both FeTiO<sub>3</sub> and MgTiO<sub>3</sub> exhibit the axial compression anisotropy, of which FeTiO<sub>3</sub> shows stronger axial compressibility anisotropy than MgTiO<sub>3</sub>. Moreover, the potential influencing factors (e.g., cation radius, crystal structure, and chemical bond strength) on the bulk moduli and the anisotropic linear compressibilities of FeTiO<sub>3</sub> and MgTiO<sub>3</sub> were further discussed.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"52 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equation of state of FeTiO3 and MgTiO3 by in-situ synchrotron X-ray diffraction at high pressures\",\"authors\":\"Kai Wang,&nbsp;Jingui Xu,&nbsp;Shanrong Zhang,&nbsp;Qifa Zhong,&nbsp;Wei Zhao,&nbsp;Dawei Fan\",\"doi\":\"10.1007/s00269-025-01324-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The equation of state of ilmenite (FeTiO<sub>3</sub>) and geikielite (MgTiO<sub>3</sub>) have been investigated using in situ synchrotron X-ray diffraction at high pressures up to ~ 21.8 GPa and ~ 23.0 GPa, respectively. No phase transitions were observed within the experimental pressure ranges for both samples. The pressure-volume data were fitted using the third-order Birch-Murnaghan equation of state (EoS), yielding the following results: for FeTiO<sub>3</sub>, the zero-pressure unit-cell volume <i>V</i><sub>0</sub> = 312.2(1) Å<sup>3</sup>, the zero-pressure bulk modulus <i>K</i><sub>0</sub> = 165(4) GPa, and its pressure derivative <i>K</i>′<sub>0</sub> = 6.6(6); for MgTiO<sub>3</sub>, <i>V</i><sub>0</sub> = 304.17(8) Å<sup>3</sup>, <i>K</i><sub>0</sub> = 157(3) GPa, and <i>K</i>′<sub>0</sub> = 7.3(4). Additionally, the axial compressional behavior of FeTiO<sub>3</sub> and MgTiO<sub>3</sub> were also fitted with a linearized third-order Birch-Murnaghan EoS. The axial compressibility coefficients for FeTiO<sub>3</sub> along the <i>a-</i> and <i>c-</i>axes are <i>β</i><sub><i>a</i></sub> = 1.43(4) × 10<sup>− 3</sup> GPa<sup>-1</sup> and <i>β</i><sub><i>c</i></sub> = 3.17(11) × 10<sup>− 3</sup> GPa<sup>-1</sup>, respectively, with an anisotropic ratio of <i>β</i><sub><i>a</i></sub>: <i>β</i><sub><i>c</i></sub> = 0.45: 1.00, while <i>β</i><sub><i>a</i></sub> = 1.76 (7) × 10<sup>− 3</sup> GPa<sup>-1</sup> and <i>β</i><sub><i>c</i></sub> = 2.61(7) × 10<sup>− 3</sup> GPa<sup>-1</sup> with an anisotropic ratio of <i>β</i><sub><i>a</i></sub>: <i>β</i><sub><i>c</i></sub> = 0.67: 1.00 for MgTiO<sub>3</sub>. Both FeTiO<sub>3</sub> and MgTiO<sub>3</sub> exhibit the axial compression anisotropy, of which FeTiO<sub>3</sub> shows stronger axial compressibility anisotropy than MgTiO<sub>3</sub>. Moreover, the potential influencing factors (e.g., cation radius, crystal structure, and chemical bond strength) on the bulk moduli and the anisotropic linear compressibilities of FeTiO<sub>3</sub> and MgTiO<sub>3</sub> were further discussed.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":\"52 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-025-01324-w\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-025-01324-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用同步x射线衍射研究了钛铁矿(FeTiO3)和盖晶石(MgTiO3)在~ 21.8 GPa和~ 23.0 GPa高压下的状态方程。两种样品在实验压力范围内均未观察到相变。采用三阶Birch-Murnaghan状态方程(EoS)拟合压力-体积数据,得到:FeTiO3的零压单元体积V0 = 312.2(1) Å3,零压体积模量K0 = 165(4) GPa,其压力导数K′0 = 6.6(6);MgTiO3的V0 = 304.17(8) Å3, K0 = 157(3) GPa, K′0 = 7.3(4)。此外,FeTiO3和MgTiO3的轴向压缩行为也符合线性化的三阶Birch-Murnaghan方程。FeTiO3在a轴和c轴上的轴向压缩系数分别为βa = 1.43(4) × 10−3 GPa-1和βc = 3.17(11) × 10−3 GPa-1,各向异性比为βa: βc = 0.45: 1.00;而MgTiO3的轴向压缩系数为βa = 1.76 (7) × 10−3 GPa-1和βc = 2.61(7) × 10−3 GPa-1,各向异性比为βa: βc = 0.67: 1.00。FeTiO3和MgTiO3均表现出轴向压缩性各向异性,其中FeTiO3比MgTiO3表现出更强的轴向压缩性各向异性。进一步讨论了阳离子半径、晶体结构和化学键强度等因素对FeTiO3和MgTiO3的体模量和各向异性线压缩率的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Equation of state of FeTiO3 and MgTiO3 by in-situ synchrotron X-ray diffraction at high pressures

Equation of state of FeTiO3 and MgTiO3 by in-situ synchrotron X-ray diffraction at high pressures

The equation of state of ilmenite (FeTiO3) and geikielite (MgTiO3) have been investigated using in situ synchrotron X-ray diffraction at high pressures up to ~ 21.8 GPa and ~ 23.0 GPa, respectively. No phase transitions were observed within the experimental pressure ranges for both samples. The pressure-volume data were fitted using the third-order Birch-Murnaghan equation of state (EoS), yielding the following results: for FeTiO3, the zero-pressure unit-cell volume V0 = 312.2(1) Å3, the zero-pressure bulk modulus K0 = 165(4) GPa, and its pressure derivative K0 = 6.6(6); for MgTiO3, V0 = 304.17(8) Å3, K0 = 157(3) GPa, and K0 = 7.3(4). Additionally, the axial compressional behavior of FeTiO3 and MgTiO3 were also fitted with a linearized third-order Birch-Murnaghan EoS. The axial compressibility coefficients for FeTiO3 along the a- and c-axes are βa = 1.43(4) × 10− 3 GPa-1 and βc = 3.17(11) × 10− 3 GPa-1, respectively, with an anisotropic ratio of βa: βc = 0.45: 1.00, while βa = 1.76 (7) × 10− 3 GPa-1 and βc = 2.61(7) × 10− 3 GPa-1 with an anisotropic ratio of βa: βc = 0.67: 1.00 for MgTiO3. Both FeTiO3 and MgTiO3 exhibit the axial compression anisotropy, of which FeTiO3 shows stronger axial compressibility anisotropy than MgTiO3. Moreover, the potential influencing factors (e.g., cation radius, crystal structure, and chemical bond strength) on the bulk moduli and the anisotropic linear compressibilities of FeTiO3 and MgTiO3 were further discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信