富al和纯mg相D的高压拉曼光谱

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chaowen Xu, Li Zhang, Xiaofeng Lu, Yanhao Lin, Shuo Qu, Shuchang Gao, Fengxia Sun, Ying Li
{"title":"富al和纯mg相D的高压拉曼光谱","authors":"Chaowen Xu,&nbsp;Li Zhang,&nbsp;Xiaofeng Lu,&nbsp;Yanhao Lin,&nbsp;Shuo Qu,&nbsp;Shuchang Gao,&nbsp;Fengxia Sun,&nbsp;Ying Li","doi":"10.1007/s00269-025-01314-y","DOIUrl":null,"url":null,"abstract":"<div><p>High-pressure Raman spectra of Al-rich phase D (Mg<sub>0.93</sub>Al<sub>0.70</sub>Si<sub>1.29</sub>O<sub>6</sub>H<sub>2.88</sub>) and pure-Mg phase D (Mg<sub>1.03</sub>Si<sub>1.71</sub>O<sub>6</sub>H<sub>3.05</sub>) were measured up to 20 GPa in diamond-anvil cells using argon as a pressure medium. The results show that the intensity of the major 777 cm<sup>− 1</sup> band in the Raman spectra of the pure-Mg phase D exhibits a significant intensity reduction within the 18–20 GPa range during compression. However, this band displays a highly linear shift in the Raman spectra of the Al-rich phase D without notable decrease in intensity in the same pressure range. This implies that the pressure stability of the M2 octahedra in the Al-rich phase D is higher than that in the pure-Mg phase D due to the substitution of Al<sup>3+</sup> for Si<sup>4+</sup>. The major OH band at about 2900 cm<sup>− 1</sup> in the Raman spectra of the pure-Mg phase D sample shifts continuously toward higher frequencies with increasing pressure due to the pressure-induced transition from straight H bonds to bent ones. Whereas, this transition occurs at pressures above 10 GPa in the Al-rich phase D, indicating that Al<sup>3+</sup> substitution in the crystal structure of phase D can also alter the high-pressure response of hydroxyl ion.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"52 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-pressure Raman spectroscopy of Al-rich and pure-Mg phase D\",\"authors\":\"Chaowen Xu,&nbsp;Li Zhang,&nbsp;Xiaofeng Lu,&nbsp;Yanhao Lin,&nbsp;Shuo Qu,&nbsp;Shuchang Gao,&nbsp;Fengxia Sun,&nbsp;Ying Li\",\"doi\":\"10.1007/s00269-025-01314-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-pressure Raman spectra of Al-rich phase D (Mg<sub>0.93</sub>Al<sub>0.70</sub>Si<sub>1.29</sub>O<sub>6</sub>H<sub>2.88</sub>) and pure-Mg phase D (Mg<sub>1.03</sub>Si<sub>1.71</sub>O<sub>6</sub>H<sub>3.05</sub>) were measured up to 20 GPa in diamond-anvil cells using argon as a pressure medium. The results show that the intensity of the major 777 cm<sup>− 1</sup> band in the Raman spectra of the pure-Mg phase D exhibits a significant intensity reduction within the 18–20 GPa range during compression. However, this band displays a highly linear shift in the Raman spectra of the Al-rich phase D without notable decrease in intensity in the same pressure range. This implies that the pressure stability of the M2 octahedra in the Al-rich phase D is higher than that in the pure-Mg phase D due to the substitution of Al<sup>3+</sup> for Si<sup>4+</sup>. The major OH band at about 2900 cm<sup>− 1</sup> in the Raman spectra of the pure-Mg phase D sample shifts continuously toward higher frequencies with increasing pressure due to the pressure-induced transition from straight H bonds to bent ones. Whereas, this transition occurs at pressures above 10 GPa in the Al-rich phase D, indicating that Al<sup>3+</sup> substitution in the crystal structure of phase D can also alter the high-pressure response of hydroxyl ion.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":\"52 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-025-01314-y\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-025-01314-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以氩气为压力介质,在金刚石砧电池中测量了富al相D (Mg0.93Al0.70Si1.29O6H2.88)和纯mg相D (Mg1.03Si1.71O6H3.05)在20 GPa下的高压拉曼光谱。结果表明:在压缩过程中,纯mg相D的拉曼光谱中777cm−1主带的强度在18 ~ 20gpa范围内显著降低;然而,在相同的压力范围内,富al相D的拉曼光谱表现出高度的线性位移,而强度没有显著降低。这表明,由于Al3+取代了Si4+,富al相D中的M2八面体的压力稳定性高于纯mg相D中的压力稳定性。纯mg相D样品的拉曼光谱中约2900 cm−1处的主OH带随着压力的增加不断向更高的频率移动,这是由于压力诱导的从直氢键到弯曲氢键的转变。而在富al相D中,这种转变发生在压力大于10 GPa的情况下,这表明Al3+在D相晶体结构中的取代也可以改变羟基离子的高压响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-pressure Raman spectroscopy of Al-rich and pure-Mg phase D

High-pressure Raman spectra of Al-rich phase D (Mg0.93Al0.70Si1.29O6H2.88) and pure-Mg phase D (Mg1.03Si1.71O6H3.05) were measured up to 20 GPa in diamond-anvil cells using argon as a pressure medium. The results show that the intensity of the major 777 cm− 1 band in the Raman spectra of the pure-Mg phase D exhibits a significant intensity reduction within the 18–20 GPa range during compression. However, this band displays a highly linear shift in the Raman spectra of the Al-rich phase D without notable decrease in intensity in the same pressure range. This implies that the pressure stability of the M2 octahedra in the Al-rich phase D is higher than that in the pure-Mg phase D due to the substitution of Al3+ for Si4+. The major OH band at about 2900 cm− 1 in the Raman spectra of the pure-Mg phase D sample shifts continuously toward higher frequencies with increasing pressure due to the pressure-induced transition from straight H bonds to bent ones. Whereas, this transition occurs at pressures above 10 GPa in the Al-rich phase D, indicating that Al3+ substitution in the crystal structure of phase D can also alter the high-pressure response of hydroxyl ion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信