基于1,3,5-苯三羧酸酯连接剂和稀土金属的金属有机骨架的热力学稳定性

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gerson J. Leonel, Mohit Verma, Godwin A. Agbanga, Laura Bonatti, Hakim Boukhalfa, Alexandra Navrotsky, Hongwu Xu
{"title":"基于1,3,5-苯三羧酸酯连接剂和稀土金属的金属有机骨架的热力学稳定性","authors":"Gerson J. Leonel,&nbsp;Mohit Verma,&nbsp;Godwin A. Agbanga,&nbsp;Laura Bonatti,&nbsp;Hakim Boukhalfa,&nbsp;Alexandra Navrotsky,&nbsp;Hongwu Xu","doi":"10.1007/s00269-024-01303-7","DOIUrl":null,"url":null,"abstract":"<div><p>This work systematically investigates the thermodynamic stability in M-BTC metal organic frameworks, where M = Y, Eu, or La and BTC = (1,3,5-benzenetricarboxylate) linker. Enthalpies of formation obtained from calorimetric measurements of Y(BTC)·5.43(H<sub>2</sub>O), Eu(BTC)·5.82(H<sub>2</sub>O) and La(BTC)·4.85(H<sub>2</sub>O) enable determination of the energetic landscape for metal substitution (Y, Eu, and La) in M-BTC materials. The enthalpies of formation from linker plus metal of La-BTC, Eu-BTC, and Y-BTC are − 3219.3 ± 3.4, 3.9 ± 2.0 and 713.3 ± 3.0 kJ mol<sup>− 1</sup><sub>,</sub> respectively. The highly endothermic enthalpy of formation of Y(BTC)·5.43(H<sub>2</sub>O) reflects a thermodynamic penalty for a change in the coordination environment of Y metal atoms in the BTC framework compared to Y<sub>2</sub>O<sub>3</sub>. The high thermodynamic stability of the M-BTC framework employing La metal confirms greater stabilization from the use of larger metal atoms in frameworks with oxygen-based linkers. The results from thermodynamic analysis suggest water is a stabilizing agent. Thus, the choice of metal atom and presence of guest water molecules can enthalpically stabilize the M-BTC materials by as much as ~ 3932 kJ mol<sup>− 1</sup>. More broadly, the results indicate complex interplay among choice of metal, water content, and thermodynamic stability in M-BTC frameworks.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"52 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic stabilization in metal organic frameworks based on 1,3,5-benzenetricarboxylate linkers and rare earth metals\",\"authors\":\"Gerson J. Leonel,&nbsp;Mohit Verma,&nbsp;Godwin A. Agbanga,&nbsp;Laura Bonatti,&nbsp;Hakim Boukhalfa,&nbsp;Alexandra Navrotsky,&nbsp;Hongwu Xu\",\"doi\":\"10.1007/s00269-024-01303-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work systematically investigates the thermodynamic stability in M-BTC metal organic frameworks, where M = Y, Eu, or La and BTC = (1,3,5-benzenetricarboxylate) linker. Enthalpies of formation obtained from calorimetric measurements of Y(BTC)·5.43(H<sub>2</sub>O), Eu(BTC)·5.82(H<sub>2</sub>O) and La(BTC)·4.85(H<sub>2</sub>O) enable determination of the energetic landscape for metal substitution (Y, Eu, and La) in M-BTC materials. The enthalpies of formation from linker plus metal of La-BTC, Eu-BTC, and Y-BTC are − 3219.3 ± 3.4, 3.9 ± 2.0 and 713.3 ± 3.0 kJ mol<sup>− 1</sup><sub>,</sub> respectively. The highly endothermic enthalpy of formation of Y(BTC)·5.43(H<sub>2</sub>O) reflects a thermodynamic penalty for a change in the coordination environment of Y metal atoms in the BTC framework compared to Y<sub>2</sub>O<sub>3</sub>. The high thermodynamic stability of the M-BTC framework employing La metal confirms greater stabilization from the use of larger metal atoms in frameworks with oxygen-based linkers. The results from thermodynamic analysis suggest water is a stabilizing agent. Thus, the choice of metal atom and presence of guest water molecules can enthalpically stabilize the M-BTC materials by as much as ~ 3932 kJ mol<sup>− 1</sup>. More broadly, the results indicate complex interplay among choice of metal, water content, and thermodynamic stability in M-BTC frameworks.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":\"52 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-024-01303-7\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-024-01303-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究系统地研究了M = Y, Eu, La和BTC =(1,3,5-苯三羧酸酯)连接剂的M-BTC金属有机骨架的热力学稳定性。通过量热法测量Y(BTC)·5.43(H2O)、Eu(BTC)·5.82(H2O)和La(BTC)·4.85(H2O)的生成焓,可以确定M-BTC材料中金属取代(Y、Eu和La)的能量格局。La-BTC、Eu-BTC和Y-BTC的连接剂加金属生成焓分别为- 3219.3±3.4、3.9±2.0和713.3±3.0 kJ mol−1。与Y2O3相比,Y(BTC)·5.43(H2O)的高吸热生成焓反映了BTC框架中Y金属原子配位环境变化的热力学惩罚。采用La金属的M-BTC框架具有较高的热力学稳定性,证实了在含氧连接剂的框架中使用较大的金属原子具有更高的稳定性。热力学分析结果表明,水是一种稳定剂。因此,金属原子的选择和客体水分子的存在可以使M-BTC材料的热稳定性达到~ 3932 kJ mol−1。更广泛地说,结果表明M-BTC框架中金属选择、含水量和热力学稳定性之间存在复杂的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic stabilization in metal organic frameworks based on 1,3,5-benzenetricarboxylate linkers and rare earth metals

This work systematically investigates the thermodynamic stability in M-BTC metal organic frameworks, where M = Y, Eu, or La and BTC = (1,3,5-benzenetricarboxylate) linker. Enthalpies of formation obtained from calorimetric measurements of Y(BTC)·5.43(H2O), Eu(BTC)·5.82(H2O) and La(BTC)·4.85(H2O) enable determination of the energetic landscape for metal substitution (Y, Eu, and La) in M-BTC materials. The enthalpies of formation from linker plus metal of La-BTC, Eu-BTC, and Y-BTC are − 3219.3 ± 3.4, 3.9 ± 2.0 and 713.3 ± 3.0 kJ mol− 1, respectively. The highly endothermic enthalpy of formation of Y(BTC)·5.43(H2O) reflects a thermodynamic penalty for a change in the coordination environment of Y metal atoms in the BTC framework compared to Y2O3. The high thermodynamic stability of the M-BTC framework employing La metal confirms greater stabilization from the use of larger metal atoms in frameworks with oxygen-based linkers. The results from thermodynamic analysis suggest water is a stabilizing agent. Thus, the choice of metal atom and presence of guest water molecules can enthalpically stabilize the M-BTC materials by as much as ~ 3932 kJ mol− 1. More broadly, the results indicate complex interplay among choice of metal, water content, and thermodynamic stability in M-BTC frameworks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信