S. Chatterjee, S. Sahu, Binit Mallick, Umang Singh, S. Bhunia, R. Sarkar, Dipankar Saha, A. Laha
{"title":"InGaN/GaN Hybrid‐Nanostructure Light Emitting Diodes with Emission Wavelength Green and Beyond","authors":"S. Chatterjee, S. Sahu, Binit Mallick, Umang Singh, S. Bhunia, R. Sarkar, Dipankar Saha, A. Laha","doi":"10.1002/pssr.202400147","DOIUrl":"https://doi.org/10.1002/pssr.202400147","url":null,"abstract":"Three sets of InGaN/GaN nanowire (NW) heterostructures are grown on Si(111) substrates under different growth conditions. A quasi‐two‐dimensional p‐GaN layer is grown on top of those structures using the epitaxial lateral overgrowth (ELOG) technique. Finally, the light‐emitting diodes (LED) are fabricated using these hybrid nanostructures following standard fabrication techniques. Electroluminescence (EL) measurement confirmed the emission wavelengths of 530.0 nm (green), 608.3 nm (orange), and 632.5 nm (red). The knee voltages of the devices are estimated to be in the range of 2.18–2.89 V, with higher knee voltages for samples emitting lower wavelengths. Further analysis of forward bias electrical characteristics suggests the dominance of tunneling current and an increase in the defect density in the heterostructures emitting higher wavelengths.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141643682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xijian Zhang, Jidong Jin, Jaekyun Kim, Claudio Balocco, Jiawei Zhang, Aimin Song
{"title":"TiO2‐Based Schottky Diodes as Bidirectional Switches for Bipolar Resistive Memories","authors":"Xijian Zhang, Jidong Jin, Jaekyun Kim, Claudio Balocco, Jiawei Zhang, Aimin Song","doi":"10.1002/pssr.202400156","DOIUrl":"https://doi.org/10.1002/pssr.202400156","url":null,"abstract":"This study presents TiO2‐based Schottky diodes designed as bidirectional switches for bipolar resistive memories. The TiO2 films in these Schottky diodes are prepared through an anodization process. The reverse current of these diodes exhibits an exponential increase with rising reverse voltage, ultimately matching the forward current. When two diodes are connected back‐to‐back, they demonstrate superior current‐voltage symmetry and provide a wider off‐state voltage range compared to a single diode, reaching up to 3.65 V. The adjustable off‐state voltage range (0.40 V to 3.65 V) of the switch, whether utilizing two diodes or a single diode, correlates well with the TiO2 layer thickness and oxygen partial pressure during Pt electrode sputtering. These diodes possess bidirectional switching characteristics and can serve as effective switch elements to address the sneak‐path issue in bipolar resistive memories.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141336472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electronic, transport and optical properties of potential transparent conductive material Rb2Pb2O3","authors":"Jing-Yi Xia, Wei Zeng, Zheng-Tang Liu, Qi-Jun Liu, Juan Gao, Zhen Jiao","doi":"10.1002/pssr.202400135","DOIUrl":"https://doi.org/10.1002/pssr.202400135","url":null,"abstract":"To better verify the potential of Rb2Pb2O3 as p‐type transparent conductive oxides (TCOs), the structural, electronic, mechanical, transport and optical properties of Rb2Pb2O3 were calculated in detail under the framework of density functional theory (DFT). Significantly, Rb2Pb2O3 is a p‐type semiconductor with an indirect 2.82 eV bandgap. Here, the Pb‐6p and O‐2p orbits hybridized to form ionic Pb‐O bonds, which determines the degree of localization of electrons in valence band maximum. Interestingly, Rb‐O bond is extremely weak, and the Rb atom is rarely involved in bonding interactions. This contributes to isotropy, ductility and good mobility of Rb2Pb2O3, making it soft and suitable for application in flexible electronics. More importantly, as a transparent conductive material, Rb2Pb2O3 not only shows good transparency in the visible region, but also has good electrical conductivity. Therefore, we preliminarily identified Rb2Pb2O3 as an intrinsic p‐TCO with good performances. Our theoretical finding provides a new candidate for p‐TCOs and paves a way for further performance improvement of Rb2Pb2O3.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141337005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liang Wang, Yongxiang Zhang, Mengtong Yan, Junxi Zhang, Hongbo Lu, Mei Lyu, Jun Zhu
{"title":"Low‐threshold Amplified Spontaneous Emission of Dion‐Jacobson Phase Perovskite Films Achieved by Tuning Diamine Cation Size","authors":"Liang Wang, Yongxiang Zhang, Mengtong Yan, Junxi Zhang, Hongbo Lu, Mei Lyu, Jun Zhu","doi":"10.1002/pssr.202400080","DOIUrl":"https://doi.org/10.1002/pssr.202400080","url":null,"abstract":"Dion‐Jacobson (DJ) phase perovskites have received attention in the field of amplified spontaneous radiation (ASE) and lasers due to their excellent structural stability and charge transfer performance. However, the effect of the diamine cation size on the ASE properties of DJ phase perovskite has not been studied. Herein, we systematically study the effect and the results show that tuning the size of the diamine cation can inhibit the formation of the small‐n phases, reduce the surface roughness, and passivate defects of DJ phase perovskite films. Based on those, we realize the low‐threshold ASE (65 μJ cm−2 under nanosecond laser excitation) of the 1,3‐propylenediamine cation (PDA)‐based DJ phase perovskite films. Additionally, the film exhibits excellent photostability. The ASE intensity remains at 90% of the original value after a pulsed laser irradiation of 3000 μJ cm−2 for 120 min. This work provides a strategy to realize high‐performance DJ phase perovskite ASE and lasers.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141364363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Masayuki Imanishi, S. Usami, K. Murakami, K. Okumura, Kosuke Nakamura, K. Kakinouchi, Y. Otoki, Tomio Yamashita, Naohiro Tsurumi, Satoshi Tamura, Hiroshi Ohno, Y. Okayama, Taku Fujimori, Seiji Nagai, Miki Moriyama, Yusuke Mori
{"title":"Characteristics of Vertical Transistors on a GaN Substrate Fabricated via Na‐flux Method and Enlargement of the Substrate Surpassing 6 Inches","authors":"Masayuki Imanishi, S. Usami, K. Murakami, K. Okumura, Kosuke Nakamura, K. Kakinouchi, Y. Otoki, Tomio Yamashita, Naohiro Tsurumi, Satoshi Tamura, Hiroshi Ohno, Y. Okayama, Taku Fujimori, Seiji Nagai, Miki Moriyama, Yusuke Mori","doi":"10.1002/pssr.202400106","DOIUrl":"https://doi.org/10.1002/pssr.202400106","url":null,"abstract":"The Na‐flux method is expected to be a key GaN growth technique for obtainning ideal bulk GaN crystals. Herein we describe the structural quality of the latest GaN crystals grown using the Na‐flux method and, for the first time, the characteristics of a vertical transistor fabricated on a GaN substrate grown using this method. Vertical transistors exhibit normally off operation with a gate voltage threshold exceeding 2 V and a maximum drain current of 3.3 A during the on‐state operation. Additionally, it demonstrates a breakdown voltage exceeding 600 V and a low leakage current during off‐state operation. We also describe that the variation in the on‐resistance can be minimized using GaN substrates with minimal off‐angle variations. This is crucial for achieving the large‐current chips required for future demonstration of actual devices. In addition, the reverse I–V characteristics of the parasitic p–n junction diode structures indicate a reduction in the number of devices with a significant leakage current compared to commercially available GaN substrates. Finally, we demonstrate a circular GaN substrate with a diameter of 161 mm, surpassing 6 in, grown using the Na‐flux method, making it the largest GaN substrate aside from those produced through the tiling technique.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141370066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yingjie Yang, Xiaoning Zhao, Ye Tao, Ya Lin, Zhongqiang Wang
{"title":"ZIF‐67‐derived Co@Carbon polyhedra anchored on reduced graphene oxide with multiple attenuation abilities for full X‐ and Ku‐band microwave absorption","authors":"Yingjie Yang, Xiaoning Zhao, Ye Tao, Ya Lin, Zhongqiang Wang","doi":"10.1002/pssr.202400159","DOIUrl":"https://doi.org/10.1002/pssr.202400159","url":null,"abstract":"High performance microwave absorption (MA) materials are attracting growing attention to solve the expanded electromagnetic interference problems. Herein, zeolitic imidazolate organic frameworks (MOF)‐67 (ZIF‐67) are grown in‐situ on the sheet of graphene oxide (GO) through the coordination of Co2+ with oxygen functional groups. Through carbonization in an inert atmosphere, Co@carbon polyhedra (Co@CP)‐decorated reduced GO composites (Co@CP‐rGO) with a large number of heterogeneous interfaces are successfully obtained. The composites demonstrate excellent MA performance. With a filler loading of 10 wt%, the optimal minimum reflection loss (RL) of the composite can reach ‐54.6 dB. More importantly, the composites with thickness of 3.5 mm and 2.5 mm show the effective absorption bandwidth (EAB, RL < ‐10 dB) of 4.75 GHz (8.18‐12.93 GHz) and 6.56 GHz (11.44GHz‐18GHz), fully covering the X‐band and Ku‐band. It is proposed that the synergistic effect of multiple dielectric loss, magnetic loss, reflections and scattering contributes to the high MA performance.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141370928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low intensity and low temperature (LILT) effects on the Upright Metamorphic Four‐Junction (UMM4J) solar cells","authors":"Jiaming Zhou, Kelun Zhao, Yanqing Zhang, Chaoming Liu, Xinyi Li, Lijie Sun, Hongquan Zheng, Chunhua Qi, Guoliang Ma, Tianqi Wang, Mingxue Huo","doi":"10.1002/pssr.202400162","DOIUrl":"https://doi.org/10.1002/pssr.202400162","url":null,"abstract":"UMM4J solar cells are evaluated under different LILT conditions. The efficiency findings near Earth’s orbit (1 sun, 300 K), Jupiter (0.032 sun, 123 K), and Saturn (0.01 sun, 100 K) are 26.54%, 29.68%, and 28.27%. According to single diode model, Jsc is linear with light intensity (I), while Voc is linear with the natural logarithm of light intensity (ln(I)). Voc shows a linear relationship with temperature within the range of 150K to 300K, with a temperature coefficient of ∽ ‐7. 7 mV/K. However, Voc displays a sublinear relationship with temperature below 150K.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141376344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G.M. Cohen, A. Majumdar, C. Cheng, A. Ray, D. Piatek, L. Gignac, C. Lavoie, A. Grun, H. Cheng, Z-L. Liu, H. Lung, H. Miyazoe, R. L. Bruce, M. BrightSky
{"title":"Low reset current mushroom cell phase‐change memory (PCM) using fiber‐textured homostructure GeSbTe on highly oriented seed layer","authors":"G.M. Cohen, A. Majumdar, C. Cheng, A. Ray, D. Piatek, L. Gignac, C. Lavoie, A. Grun, H. Cheng, Z-L. Liu, H. Lung, H. Miyazoe, R. L. Bruce, M. BrightSky","doi":"10.1002/pssr.202300426","DOIUrl":"https://doi.org/10.1002/pssr.202300426","url":null,"abstract":"We report a low reset current 1T1R mushroom cell phase‐change memory (PCM) device that uses fiber‐textured homostructure GeSbTe (GST) grown on highly‐oriented TiTe2 seed layer. The homostructure device outperformed the industry standard device, that uses doped polycrystalline GST, on most figures of merit. The homostructure devices were also benchmarked against superlattice PCM devices with 10 periods of 5/5nm GST/Sb2Te3 grown on the TiTe2 seed layer, and were found to have same low reset current. We also observed by TEM that the alternating layers of GST/Sb2Te3 and TiTe2/Sb2Te3 in superlattice devices is intermixed in the switched region after the devices are cycled with reset/set pulses. Additionally, when the superlattice device is left in the set state the intermixed switched region crystallinity is textured and exhibits van der Waals gaps. The superlattice PCM devices require a precise layered structure that is hard to yield on a full wafer scale. In contrast, fiber‐textured homostructure PCM cells reported here are easily manufacturable, while providing similarly low reset current and low resistance drift which makes this device suitable for analog AI computation.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141386523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Demonstration of near‐size independent EQE for 368 nm UV micro‐LEDs","authors":"Guangying Wang, Shuwen Xie, Yuting Li, Wentao Zhang, Jonathan Vigen, Timothy Shih, Qinchen Lin, Jiarui Gong, Zhenqiang Ma, S. Pasayat, Chirag Gupta","doi":"10.1002/pssr.202400119","DOIUrl":"https://doi.org/10.1002/pssr.202400119","url":null,"abstract":"UV‐ranged micro‐LEDs are being explored for numerous applications due to their high stability and power efficiency. However, previous reports have shown reduced EQE and increased leakage current due to the increase in surface‐to‐volume ratio with a decrease in the micro‐LED size. In this work, we studied the size‐related performance for UV‐A micro‐LEDs, ranging from 8 × 8 µm2 to 100 × 100 µm2. These devices exhibited reduced leakage current with the implementation of ALD based sidewall passivation. A systematic EQE comparison was performed with minimal leakage current and obtained a size‐independent on‐wafer EQE of around 5.5%. Smaller sized devices experimentally showed enhanced EQE at high current density due to their improved heat dissipation capabilities. To the best of authors’ knowledge, this is the highest reported on‐wafer EQE demonstrated in < 10 µm dimensioned 368 nm UV LEDs.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141103065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tabish Aftab, Osbel Almora, J. Ferré‐Borrull, L. Marsal
{"title":"3D Nanostructured Electrodes based on Anodic Alumina Templates for Stable Pseudo‐capacitors","authors":"Tabish Aftab, Osbel Almora, J. Ferré‐Borrull, L. Marsal","doi":"10.1002/pssr.202400144","DOIUrl":"https://doi.org/10.1002/pssr.202400144","url":null,"abstract":"This study investigates the preparation of nickel nanostructured electrodes for the enhancement of supercapacitor (SC) performance. The nanostructured electrodes were synthesized using nanoporous anodic aluminium oxide (NAA) as a template via the pulsed electrodeposition method. Structural properties were examined using field‐emission scanning electron microscopy (FESEM), while electrochemical characterization was conducted through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results reveal that Ni nanorod arrays can be obtained embedded in the NAA matrix and with electrical contact with the aluminium substrate. On average, the rods are spaced 90 nm apart, with a diameter of 70 nm and a length of 2 µm. The Ni@NAA electrode exhibit an enlarged active area and exceptional electrochemical performance, demonstrating remarkable stability over 5000 cycles of CV at a scan rate of 50 mV·s‐1. Specific capacitance values exceeding 100 mF·cm‐2 and maximum charging times of less than 10 minutes are reported, highlighting its suitability for high‐power energy devices requiring pseudo‐supercapacitance. The study underscores the significance of nanostructured electrodes in advancing energy storage technologies and presents promising prospects for practical applications.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}