Low reset current mushroom cell phase‐change memory (PCM) using fiber‐textured homostructure GeSbTe on highly oriented seed layer

G.M. Cohen, A. Majumdar, C. Cheng, A. Ray, D. Piatek, L. Gignac, C. Lavoie, A. Grun, H. Cheng, Z-L. Liu, H. Lung, H. Miyazoe, R. L. Bruce, M. BrightSky
{"title":"Low reset current mushroom cell phase‐change memory (PCM) using fiber‐textured homostructure GeSbTe on highly oriented seed layer","authors":"G.M. Cohen, A. Majumdar, C. Cheng, A. Ray, D. Piatek, L. Gignac, C. Lavoie, A. Grun, H. Cheng, Z-L. Liu, H. Lung, H. Miyazoe, R. L. Bruce, M. BrightSky","doi":"10.1002/pssr.202300426","DOIUrl":null,"url":null,"abstract":"We report a low reset current 1T1R mushroom cell phase‐change memory (PCM) device that uses fiber‐textured homostructure GeSbTe (GST) grown on highly‐oriented TiTe2 seed layer. The homostructure device outperformed the industry standard device, that uses doped polycrystalline GST, on most figures of merit. The homostructure devices were also benchmarked against superlattice PCM devices with 10 periods of 5/5nm GST/Sb2Te3 grown on the TiTe2 seed layer, and were found to have same low reset current. We also observed by TEM that the alternating layers of GST/Sb2Te3 and TiTe2/Sb2Te3 in superlattice devices is intermixed in the switched region after the devices are cycled with reset/set pulses. Additionally, when the superlattice device is left in the set state the intermixed switched region crystallinity is textured and exhibits van der Waals gaps. The superlattice PCM devices require a precise layered structure that is hard to yield on a full wafer scale. In contrast, fiber‐textured homostructure PCM cells reported here are easily manufacturable, while providing similarly low reset current and low resistance drift which makes this device suitable for analog AI computation.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (RRL) – Rapid Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssr.202300426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report a low reset current 1T1R mushroom cell phase‐change memory (PCM) device that uses fiber‐textured homostructure GeSbTe (GST) grown on highly‐oriented TiTe2 seed layer. The homostructure device outperformed the industry standard device, that uses doped polycrystalline GST, on most figures of merit. The homostructure devices were also benchmarked against superlattice PCM devices with 10 periods of 5/5nm GST/Sb2Te3 grown on the TiTe2 seed layer, and were found to have same low reset current. We also observed by TEM that the alternating layers of GST/Sb2Te3 and TiTe2/Sb2Te3 in superlattice devices is intermixed in the switched region after the devices are cycled with reset/set pulses. Additionally, when the superlattice device is left in the set state the intermixed switched region crystallinity is textured and exhibits van der Waals gaps. The superlattice PCM devices require a precise layered structure that is hard to yield on a full wafer scale. In contrast, fiber‐textured homostructure PCM cells reported here are easily manufacturable, while providing similarly low reset current and low resistance drift which makes this device suitable for analog AI computation.This article is protected by copyright. All rights reserved.
在高取向种子层上使用纤维纹理同质结构 GeSbTe 的低重置电流蘑菇电池相变存储器 (PCM)
我们报告了一种低重置电流 1T1R 蘑菇电池相变存储器 (PCM) 器件,它使用了生长在高取向 TiTe2 种子层上的纤维纹理同结构 GeSbTe (GST)。同结构器件在大多数性能指标上都优于使用掺杂多晶 GST 的行业标准器件。我们还将同结构器件与在 TiTe2 种子层上生长的 10 期 5/5nm GST/Sb2Te3 的超晶格 PCM 器件进行了比较,发现它们具有相同的低重置电流。我们还通过 TEM 观察到,超晶格器件中的 GST/Sb2Te3 和 TiTe2/Sb2Te3 交替层在器件循环使用复位/置位脉冲后,在开关区相互混合。此外,当超晶格器件处于设定状态时,混合开关区的晶体会出现纹理,并显示出范德华间隙。超晶格 PCM 器件需要精确的分层结构,而这种结构很难在整个晶片上实现。相比之下,本文报告的纤维纹理同质结构 PCM 单元易于制造,同时具有类似的低重置电流和低电阻漂移特性,因此该器件适用于模拟人工智能计算。本文受版权保护,保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信