physica status solidi (RRL) – Rapid Research Letters最新文献

筛选
英文 中文
High Cerium content Fe‐Ce‐Nd‐B sintered magnets with high coercivity 具有高矫顽力的高铈含量 Fe-Ce-Nd-B 烧结磁体
physica status solidi (RRL) – Rapid Research Letters Pub Date : 2024-05-23 DOI: 10.1002/pssr.202400151
D. Goll, Marius Boettle, Joerg Buschbeck, R. Loeffler, Gerhard Schneider
{"title":"High Cerium content Fe‐Ce‐Nd‐B sintered magnets with high coercivity","authors":"D. Goll, Marius Boettle, Joerg Buschbeck, R. Loeffler, Gerhard Schneider","doi":"10.1002/pssr.202400151","DOIUrl":"https://doi.org/10.1002/pssr.202400151","url":null,"abstract":"Ce substitution of Nd in FeNdB sintered magnets is very interesting for reasons of resource efficiency, sustainability and costs. However, the magnetic properties of high Ce‐content magnets are poor. This is mainly due to the lower values of intrinsic magnetic properties of Fe14Ce2B compared to Fe14Nd2B as well as the Laves phase Fe2Ce, which is formed in the grain boundaries and forms flat aggregates for higher Ce‐content. In this paper, sintered magnets with 75 at% degree of substitution of the composition Fe70.9‐[(Ce1‐xLax)0.75Nd0.25]18.8‐B5.8‐M4.5 (M = Co, Ti, Al, Ga, Cu, 0 ≤ × ≤ 0.3) are produced and analyzed. It is shown that a new rare earth rich grain boundary phase is formed adding La and that the Laves phase fraction can be reduced by up to 85%. With increasing La content, the remanence and Curie temperature increase and the temperature coefficient of Hc improves. A coercivity, remanence and maximum energy density of up to µ0Hc = 0.74 T, Jr = 0.98 T and (BH)max = 139.9 kJ/m3 have been achieved.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"53 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141107267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene plasmonic time crystals 石墨烯质子时间晶体
physica status solidi (RRL) – Rapid Research Letters Pub Date : 2024-05-22 DOI: 10.1002/pssr.202400116
Kwang-Hyon Kim, O. Kang-Hyok
{"title":"Graphene plasmonic time crystals","authors":"Kwang-Hyon Kim, O. Kang-Hyok","doi":"10.1002/pssr.202400116","DOIUrl":"https://doi.org/10.1002/pssr.202400116","url":null,"abstract":"The concept of photonic crystals has recently been extended to the time domain and attracted great interest. Unfortunately, realizing photonic time crystals is a challenging task due to the practical difficulty in modulating dielectric constants with large modulation depth. This problem can be resolved by using graphene, the conductivity of which is tunable with significantly large contrast. In this report, graphene plasmonic time crystals, as a new kind of photonic time crystals in atomically thin two‐dimensional material, are proposed and their optical properties are investigated. Their bandstructures are analytically calculated and the propagations of graphene plasmons in temporal crystalline structures are numerically evaluated. Periodically driven by temporally modulating the Fermi energy, graphene plasmons exhibit in‐gap amplification and defects‐immune topological edge states, revealing the nature as plasmonic time crystals. Graphene plasmonic time crystals will be realized soon after this proposal due to the possibility of modulating its conductivity with large contrast by simple electrical gating.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"54 36","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141108624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First‐principles Study of the Al‐N co‐doped Zincblende ZnO Al-N 共掺杂锌钴氧化物的第一性原理研究
physica status solidi (RRL) – Rapid Research Letters Pub Date : 2024-05-22 DOI: 10.1002/pssr.202400104
Yang Xiang, Hao Tang, Zihao Zhu, Bo Pang, Tingjun Zhou, H. Zhan, Junyong Kang, Yongliang Zhou
{"title":"First‐principles Study of the Al‐N co‐doped Zincblende ZnO","authors":"Yang Xiang, Hao Tang, Zihao Zhu, Bo Pang, Tingjun Zhou, H. Zhan, Junyong Kang, Yongliang Zhou","doi":"10.1002/pssr.202400104","DOIUrl":"https://doi.org/10.1002/pssr.202400104","url":null,"abstract":"Electronic properties of intrinsic ZnO, N doped ZnO and Al‐N co‐doped ZnO of both hexagonal wurtzite (HW) and zinc blende (ZB) structures were investigated by first‐principles calculations. Both N doped ZB‐ZnO and N doped HW‐ZnO achieve p‐type transition by the introduction of N‐2p states, forming shallow acceptor levels above the valence band. However, the positive impurity formation energy implied the difficulty and instability of N‐doped ZnO. In Al‐N co‐doped ZnO, the Al elements compensate the p‐type doping effect, but partially enhance the solubility of N. Furthermore, the comparison of the electronic properties between HW‐ZnO and ZB‐ZnO, indicated that the ZB structure favors the achieving of p‐type doping.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"64 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141110403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charge carrier transport mechanism through different oxides for (n) poly‐Si/SiOx fired passivating contacts (n) 聚硅/氧化硅烧结钝化触点电荷载流子通过不同氧化物的传输机制
physica status solidi (RRL) – Rapid Research Letters Pub Date : 2024-05-21 DOI: 10.1002/pssr.202400099
Tobias Okker, R. Glatthaar, S. Seren, Giso Hahn, Barbara Terheiden
{"title":"Charge carrier transport mechanism through different oxides for (n) poly‐Si/SiOx fired passivating contacts","authors":"Tobias Okker, R. Glatthaar, S. Seren, Giso Hahn, Barbara Terheiden","doi":"10.1002/pssr.202400099","DOIUrl":"https://doi.org/10.1002/pssr.202400099","url":null,"abstract":"In recent years the mechanism of carrier transport through a junction of polycrystalline silicon (poly‐Si) on an interface oxide has been extensively discussed for passivating contacts of crystalline silicon‐based solar cells fabricated along the well‐established high temperature route. In the fired passivating contact (FPC) approach, no extended crystallization is foreseen which also modifies the properties of the junction. Here, we investigate atmospheric pressure chemical vapor deposited (APCVD), phosphorus‐doped (n) poly‐Si, which is annealed at different temperatures and durations following the FPC approach. Symmetric lifetime samples show the passivation potential of the FPC approach with implied open circuit voltages (iVOC) values of up to 736 mV. Temperature‐dependent specific contact resistivity measurements applying the transfer length method on differently grown interface oxides are used to identify tunneling or pinhole transport, or a combination of both. It is found that a transition from tunneling to pinhole transport surprisingly takes place already for annealing durations of a few seconds and is primarily impacted by annealing temperature instead of duration. Pinhole magnification studies via tetramethylammonium etching and scanning electron microscopy confirm the existence of pinholes in the interfacial oxides.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"141 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of Vanadium Doped Transition Metal Dichalcogenides under Etching Atmosphere 掺钒过渡金属二卤化物在蚀刻气氛下的稳定性
physica status solidi (RRL) – Rapid Research Letters Pub Date : 2024-05-19 DOI: 10.1002/pssr.202400128
Sunwen Zhao, R. Xiao, Yuhan Feng, Chuang Tian, Jiawen Liu, Guanghui Yu
{"title":"Stability of Vanadium Doped Transition Metal Dichalcogenides under Etching Atmosphere","authors":"Sunwen Zhao, R. Xiao, Yuhan Feng, Chuang Tian, Jiawen Liu, Guanghui Yu","doi":"10.1002/pssr.202400128","DOIUrl":"https://doi.org/10.1002/pssr.202400128","url":null,"abstract":"Two‐dimensional (2D) transition metal dichalcogenides (TMDs) have attracted intensive interests for its unique electronic, optical, and thermal properties. Doping is necessary to expand the application. However, the stability of doped materials has been overlooked. This study focuses on the stability of monolayer‐doped MoS2 with different vanadium (V) concentrations. It provides a quantitative assessment of the etching results. Findings indicate that the stability of MoS2 under different etching atmospheres follows the series of lightly doped MoS2 (LD), pristine MoS2 (PR), moderately doped MoS2 (MD), and highly doped MoS2 (HD). Our research indicates that the stability of the material is linked to the bonding energy of cations and anions, as well as the amount of lattice distortion, which competes with one another. Low levels of V doping do not lead to significant lattice distortion, and the binding energy between sulfur (S) and V surpasses that of molybdenum (Mo), which is the primary factor. Excessive doping results in lattice distortion, which leads to a multitude of defects and a reduction in durability. This work is important for guiding the assessment of the reliability, the protection of degradation, and application scenarios of TMDs.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"119 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141124346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulsed sputtering epitaxy of coherent AlN/Al0.5Ga0.5N/AlN multichannel structures 相干 AlN/Al0.5Ga0.5N/AlN 多通道结构的脉冲溅射外延
physica status solidi (RRL) – Rapid Research Letters Pub Date : 2024-05-16 DOI: 10.1002/pssr.202400142
Takao Kozaka, Ryota Maeda, Kohei Ueno, Hiroshi Fujioka
{"title":"Pulsed sputtering epitaxy of coherent AlN/Al0.5Ga0.5N/AlN multichannel structures","authors":"Takao Kozaka, Ryota Maeda, Kohei Ueno, Hiroshi Fujioka","doi":"10.1002/pssr.202400142","DOIUrl":"https://doi.org/10.1002/pssr.202400142","url":null,"abstract":"This paper discusses the advantages of AlN low‐temperature interface protective layer (LT‐IPL) prepared by sputtering epitaxy for the fabrication of AlN/Al0.5Ga0.5N/AlN multichannel device structures. The study found that the use of LT‐IPL enhances the AlN/AlGaN interface surface morphology and reduces AlN/Al0.5Ga0.5N/AlN multichannel structure misfit dislocations. This approach results in a coherent four‐channel AlN/AlGaN/AlN structure with considerably improved crystallinity. Moreover, consistent with predictions from one‐dimensional simulations, reductions in sheet resistance are inversely proportional to the number of channels. These advancements are pivotal for the development of sophisticated AlN/AlGaN/AlN multichannel structures which are tailored for applications that require low resistance and high voltage.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"24 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140969794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanically and Electrically Stable Hybrid Aerogels as Free‐Standing Anodes for High‐Capacity Lithium‐Ion Battery 作为高容量锂离子电池独立阳极的机械和电气稳定的混合气凝胶
physica status solidi (RRL) – Rapid Research Letters Pub Date : 2024-05-15 DOI: 10.1002/pssr.202400118
Kyumin Park, Byeongho Park, Kanghoon Seo, Hyekyeong Jang, Myung Gwan Hahm, Youngseok Oh
{"title":"Mechanically and Electrically Stable Hybrid Aerogels as Free‐Standing Anodes for High‐Capacity Lithium‐Ion Battery","authors":"Kyumin Park, Byeongho Park, Kanghoon Seo, Hyekyeong Jang, Myung Gwan Hahm, Youngseok Oh","doi":"10.1002/pssr.202400118","DOIUrl":"https://doi.org/10.1002/pssr.202400118","url":null,"abstract":"Molybdenum disulfide (MoS2) is a promising alternative to graphite anodes in battery materials. Therefore, it is critical to scrutinize their structural stability and charge storage capacity during battery operation. In this study, freestanding electrodes consisting of MoS2‐incorporated carbon nanotube aerogels (MSCA) were fabricated using a simple yet scalable hydrothermal method, as used in lithium‐ion batteries. The outer nitrogen‐doped graphitic carbon (NGr) layers support efficient charge transport, even under a substantial compressive environment, and improve the structural integrity, showing significant improvements in battery performance, such as a high rate capacity of 820 mAh g−1 at the current density of 5 A g−1 and 94% capacity retention after 170 cycles (1170 mAh g−1 at 1 A g−1 after 170 cycles), even in the absence of polymer binders and conductive additives. The resulting NGr/MoS2/Single‐Walled Carbon Nanotubes (SWCNT) freestanding electrodes have great potential to increase the volumetric and gravimetric energy density of batteries.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"127 39","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140977486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relatively Low Frequency Magnetic Field Detection System Using Metglas/PZT‐5B Sensor 使用 Metglas/PZT-5B 传感器的相对低频磁场探测系统
physica status solidi (RRL) – Rapid Research Letters Pub Date : 2024-05-14 DOI: 10.1002/pssr.202400133
Zhihao Jiang, Xiaoxu Liu, Zhejun Jin, Zhao Yao, Yuheng Wang, Shipeng Zhang, Quanming Gao, Shandong Li
{"title":"Relatively Low Frequency Magnetic Field Detection System Using Metglas/PZT‐5B Sensor","authors":"Zhihao Jiang, Xiaoxu Liu, Zhejun Jin, Zhao Yao, Yuheng Wang, Shipeng Zhang, Quanming Gao, Shandong Li","doi":"10.1002/pssr.202400133","DOIUrl":"https://doi.org/10.1002/pssr.202400133","url":null,"abstract":"The magnetoelectric (ME) sensor, a new and promising type of magnetic field sensor with ultrahigh sensitivity. However, there are few reports on the research of real‐time measurement system which can promote its practical application. In this study, a novel real‐time measuring approach for weak AC magnetic fields at relatively low frequency was proposed using Metglas/PZT‐5B magnetoelectric sensors. The system mainly consists of an oscilloscope, a signal generator and a program developed with LabVIEW programming. Real‐time measurement of relatively low frequency magnetic fields have been achieved by using frequency up‐conversion methods,simultaneously display the frequency and magnitude of the magnetic field. As a result, the real‐time measurement system was able to detect a weak AC magnetic field as low as 0.1 nT@1Hz, which is promising to push the ME sensor to practical application.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"16 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140979840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilization of Morphotropic Phase Boundary in Hafnia Via Microwave Low‐temperature Crystallization Process for Next‐generation DRAM Technology 通过微波低温结晶工艺稳定哈夫尼亚中的各向异性相界,促进下一代 DRAM 技术的发展
physica status solidi (RRL) – Rapid Research Letters Pub Date : 2024-05-13 DOI: 10.1002/pssr.202400108
Hunbeom Shin, Giuk Kim, Sujeong Lee, Hyojun Choi, Sangho Lee, Sangmok Lee, Yunseok Nam, Geonhyeong Kang, Hyungjun Kim, Jinho Ahn, Sanghun Jeon
{"title":"Stabilization of Morphotropic Phase Boundary in Hafnia Via Microwave Low‐temperature Crystallization Process for Next‐generation DRAM Technology","authors":"Hunbeom Shin, Giuk Kim, Sujeong Lee, Hyojun Choi, Sangho Lee, Sangmok Lee, Yunseok Nam, Geonhyeong Kang, Hyungjun Kim, Jinho Ahn, Sanghun Jeon","doi":"10.1002/pssr.202400108","DOIUrl":"https://doi.org/10.1002/pssr.202400108","url":null,"abstract":"The morphotropic phase boundary (MPB), which arises from the combination of antiferroelectric and ferroelectric phases, demonstrates the highest dielectric constant (κ) compared to other phases. This emphasizes its potential as a leading contender for dielectric films in future DRAM capacitors. MPB‐based high‐κ materials using hafnia have shown a trade‐off between equivalent oxide thickness (EOT) and leakage current density (Jleak) when the crystallization temperature increases with scaling the thickness. In this study, we employed a microwave annealing (MWA) method that can achieve low‐temperature crystallization below 350 °C. The purpose of this method is to mitigate the trade‐off relationships and achieve the strict criteria of current DRAM capacitors. These criteria include low EOT (less than 4 Å) and Jleak (less than 10‐7 A/cm2 at 0.8 V) characteristics. The MWA is capable of relatively low‐temperature annealing by supplying energy to the films through both thermal energy and dipole vibration energy. As a result, we achieved a record low EOT of 3.76 Å and a low leakage current characteristic of 4.2×10‐8 A/cm2 at 0.8 V concurrently. We are confident that our research can be important in addressing the challenges associated with reducing the size of next‐generation DRAM capacitors.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"97 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140984307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferroelectric SrMnO3 Thin Film Grown on (110)‐Oriented PMN‐PT Substrate 在面向 (110) 的 PMN-PT 基质上生长的铁电性 SrMnO3 薄膜
physica status solidi (RRL) – Rapid Research Letters Pub Date : 2024-04-24 DOI: 10.1002/pssr.202400025
Seong Min Park, Jaegyu Kim, G. Anoop, W. Seol, Su Yong Lee, Hyunjin Joh, Tae Yeon Kim, Jeonyong Choi, Seungbum Hong, Chan‐Ho Yang, Hyeon Jun Lee, J. Jo
{"title":"Ferroelectric SrMnO3 Thin Film Grown on (110)‐Oriented PMN‐PT Substrate","authors":"Seong Min Park, Jaegyu Kim, G. Anoop, W. Seol, Su Yong Lee, Hyunjin Joh, Tae Yeon Kim, Jeonyong Choi, Seungbum Hong, Chan‐Ho Yang, Hyeon Jun Lee, J. Jo","doi":"10.1002/pssr.202400025","DOIUrl":"https://doi.org/10.1002/pssr.202400025","url":null,"abstract":"\u0000Exploring the unique physical properties of oxide perovskites necessitates their growth on diverse single‐crystal substrates. The thin‐film growth of perovskite SrMnO3 (SMO) has been a particular focus of research due to its emerging room‐temperature multiferroicity. Herein, the epitaxial thin films of (110)‐oriented SMO are grown on the piezoelectric (110)‐oriented (1–x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN‐PT) substrate. The effects of the thickness and oxygen annealing on the crystal structure, stoichiometry, and ferroelectric properties of the SMO thin film are systematically investigated. The tensile strain produced by the lattice mismatch between the bulk SMO and the PMN‐PT substrate causes an expansion of the c‐lattice parallel to the in‐plane direction of the substrate. The films show larger a‐, b‐, and c‐lattice parameters than the bulk material, resulting in volume expansion of the unit cell. This lattice expansion is attributed to the generation of oxygen vacancies driven by the reduced formation energy caused by the high elastic strain. Piezoelectric force microscopy reveals that the SMO film contains domains with strain‐mediated in‐plane and vacancy‐mediated out‐of‐plane polarization. Furthermore, the piezoelectric response of the PMN‐PT substrate effectively modulates the biaxial tensile strain in the SMO film, offering a potential strategy for controlling the crystal structure and ferroelectric properties of SMO.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"50 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140662261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信