3D Nanostructured Electrodes based on Anodic Alumina Templates for Stable Pseudo‐capacitors

Tabish Aftab, Osbel Almora, J. Ferré‐Borrull, L. Marsal
{"title":"3D Nanostructured Electrodes based on Anodic Alumina Templates for Stable Pseudo‐capacitors","authors":"Tabish Aftab, Osbel Almora, J. Ferré‐Borrull, L. Marsal","doi":"10.1002/pssr.202400144","DOIUrl":null,"url":null,"abstract":"This study investigates the preparation of nickel nanostructured electrodes for the enhancement of supercapacitor (SC) performance. The nanostructured electrodes were synthesized using nanoporous anodic aluminium oxide (NAA) as a template via the pulsed electrodeposition method. Structural properties were examined using field‐emission scanning electron microscopy (FESEM), while electrochemical characterization was conducted through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results reveal that Ni nanorod arrays can be obtained embedded in the NAA matrix and with electrical contact with the aluminium substrate. On average, the rods are spaced 90 nm apart, with a diameter of 70 nm and a length of 2 µm. The Ni@NAA electrode exhibit an enlarged active area and exceptional electrochemical performance, demonstrating remarkable stability over 5000 cycles of CV at a scan rate of 50 mV·s‐1. Specific capacitance values exceeding 100 mF·cm‐2 and maximum charging times of less than 10 minutes are reported, highlighting its suitability for high‐power energy devices requiring pseudo‐supercapacitance. The study underscores the significance of nanostructured electrodes in advancing energy storage technologies and presents promising prospects for practical applications.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (RRL) – Rapid Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssr.202400144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the preparation of nickel nanostructured electrodes for the enhancement of supercapacitor (SC) performance. The nanostructured electrodes were synthesized using nanoporous anodic aluminium oxide (NAA) as a template via the pulsed electrodeposition method. Structural properties were examined using field‐emission scanning electron microscopy (FESEM), while electrochemical characterization was conducted through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results reveal that Ni nanorod arrays can be obtained embedded in the NAA matrix and with electrical contact with the aluminium substrate. On average, the rods are spaced 90 nm apart, with a diameter of 70 nm and a length of 2 µm. The Ni@NAA electrode exhibit an enlarged active area and exceptional electrochemical performance, demonstrating remarkable stability over 5000 cycles of CV at a scan rate of 50 mV·s‐1. Specific capacitance values exceeding 100 mF·cm‐2 and maximum charging times of less than 10 minutes are reported, highlighting its suitability for high‐power energy devices requiring pseudo‐supercapacitance. The study underscores the significance of nanostructured electrodes in advancing energy storage technologies and presents promising prospects for practical applications.This article is protected by copyright. All rights reserved.
基于阳极氧化铝模板的三维纳米结构电极,用于制造稳定的伪电容器
本研究探讨了制备镍纳米结构电极以提高超级电容器(SC)性能的问题。纳米结构电极是以纳米多孔阳极氧化铝(NAA)为模板,通过脉冲电沉积法合成的。利用场发射扫描电子显微镜(FESEM)检测了电极的结构特性,并通过循环伏安法(CV)和电化学阻抗谱(EIS)进行了电化学表征。研究结果表明,镍纳米棒阵列可以嵌入 NAA 基质中,并与铝基底电接触。纳米棒的平均间距为 90 nm,直径为 70 nm,长度为 2 µm。Ni@NAA 电极具有更大的活性面积和优异的电化学性能,在扫描速率为 50 mV-s-1 的条件下,可在 5000 个循环的 CV 条件下保持卓越的稳定性。据报道,该电极的比电容值超过 100 mF-cm-2,最长充电时间小于 10 分钟,这表明它适用于需要伪超级电容的大功率能源设备。这项研究强调了纳米结构电极在推动储能技术发展方面的重要意义,并为实际应用展示了广阔的前景。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信