Physiological measurement最新文献

筛选
英文 中文
Machine learning-enhanced electrical impedance myography to diagnose and track spinal muscular atrophy progression. 机器学习增强型电阻抗肌电图诊断和跟踪脊髓性肌肉萎缩症的进展。
IF 2.3 4区 医学
Physiological measurement Pub Date : 2024-09-06 DOI: 10.1088/1361-6579/ad74d5
Buket Sonbas Cobb, Stephen J Kolb, Seward B Rutkove
{"title":"Machine learning-enhanced electrical impedance myography to diagnose and track spinal muscular atrophy progression.","authors":"Buket Sonbas Cobb, Stephen J Kolb, Seward B Rutkove","doi":"10.1088/1361-6579/ad74d5","DOIUrl":"10.1088/1361-6579/ad74d5","url":null,"abstract":"<p><p><i>Objective.</i>To evaluate electrical impedance myography (EIM) in conjunction with machine learning (ML) to detect infantile spinal muscular atrophy (SMA) and disease progression.<i>Approach</i>. Twenty-six infants with SMA and twenty-seven healthy infants had been enrolled and assessed with EIM as part of the NeuroNEXT SMA biomarker study. We applied a variety of modern, supervised ML approaches to this data, first seeking to differentiate healthy from SMA muscle, and then, using the best method, to track SMA progression.<i>Main Results.</i>Several of the ML algorithms worked well, but linear discriminant analysis (LDA) achieved 88.6% accuracy on subject muscles studied. This contrasts with a maximum of 60% accuracy that could be achieved using the single or multifrequency assessment approaches available at the time. LDA scores were also able to track progression effectively, although a multifrequency reactance-based measure also performed very well in this context.<i>Significance.</i>EIM enhanced with ML promises to be effective for providing effective diagnosis and tracking children and adults with SMA treated with currently available therapies. The normative trends identified here may also inform future applications of the technology in very young children. The basic analyses applied here could also likely be applied to other neuromuscular disorders characterized by muscle atrophy.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446569/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progression of total training volume in resistance training studies and its application to skeletal muscle growth. 阻力训练研究中总训练量的递增及其在骨骼肌生长中的应用。
IF 2.3 4区 医学
Physiological measurement Pub Date : 2024-09-04 DOI: 10.1088/1361-6579/ad7348
William B Hammert, Ryo Kataoka, Yujiro Yamada, Jun Seob Song, Anna Kang, Robert W Spitz, Jeremy P Loenneke
{"title":"Progression of total training volume in resistance training studies and its application to skeletal muscle growth.","authors":"William B Hammert, Ryo Kataoka, Yujiro Yamada, Jun Seob Song, Anna Kang, Robert W Spitz, Jeremy P Loenneke","doi":"10.1088/1361-6579/ad7348","DOIUrl":"10.1088/1361-6579/ad7348","url":null,"abstract":"<p><p>Progressive overload describes the gradual increase of stress placed on the body during exercise training, and is often quantified (i.e. in resistance training studies) through increases in total training volume (i.e. sets × repetitions × load) from the first to final week of the exercise training intervention. Within the literature, it has become increasingly common for authors to discuss skeletal muscle growth adaptations in the context of increases in total training volume (i.e. the magnitude progression in total training volume). The present manuscript discusses a physiological rationale for progressive overload and then explains why, in our opinion, quantifying the progression of total training volume within research investigations tells very little about muscle growth adaptations to resistance training. Our opinion is based on the following research findings: (1) a noncausal connection between increases in total training volume (i.e. progressively overloading the resistance exercise stimulus) and increases in skeletal muscle size; (2) similar changes in total training volume may not always produce similar increases in muscle size; and (3) the ability to exercise more and consequently amass larger increases in total training volume may not inherently produce more skeletal muscle growth. The methodology of quantifying changes in total training volume may therefore provide a means through which researchers can mathematically determine the total amount of external 'work' performed within a resistance training study. It may not, however, always explain muscle growth adaptations.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the physiological transmission mechanisms of photoplethysmography signals: a comprehensive review. 了解光敏血压计信号的生理传输机制:全面综述。
IF 2.3 4区 医学
Physiological measurement Pub Date : 2024-08-27 DOI: 10.1088/1361-6579/ad6be4
Kai Li, Jiuai Sun
{"title":"Understanding the physiological transmission mechanisms of photoplethysmography signals: a comprehensive review.","authors":"Kai Li, Jiuai Sun","doi":"10.1088/1361-6579/ad6be4","DOIUrl":"10.1088/1361-6579/ad6be4","url":null,"abstract":"<p><p><i>Objective</i>. The widespread adoption of Photoplethysmography (PPG) as a non-invasive method for detecting blood volume variations and deriving vital physiological parameters reflecting health status has surged, primarily due to its accessibility, cost-effectiveness, and non-intrusive nature. This has led to extensive research around this technique in both daily life and clinical applications. Interestingly, despite the existence of contradictory explanations of the underlying mechanism of PPG signals across various applications, a systematic investigation into this crucial matter has not been conducted thus far. This gap in understanding hinders the full exploitation of PPG technology and undermines its accuracy and reliability in numerous applications.<i>Approach</i>. Building upon a comprehensive review of the fundamental principles and technological advancements in PPG, this paper initially attributes the origin of PPG signals to a combination of physical and physiological transmission processes. Furthermore, three distinct models outlining the concerned physiological transmission processes are synthesized, with each model undergoing critical examination based on theoretical underpinnings, empirical evidence, and constraints.<i>Significance</i>. The ultimate objective is to form a fundamental framework for a better understanding of physiological transmission processes in PPG signal generation and to facilitate the development of more reliable technologies for detecting physiological signals.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of pulse wave analysis indexes for critically ill patients: a narrative review. 危重病人脉搏波分析指标的作用:综述。
IF 2.3 4区 医学
Physiological measurement Pub Date : 2024-08-22 DOI: 10.1088/1361-6579/ad6acf
Marta Carrara, Riccardo Campitelli, Diletta Guberti, M Ignacio Monge Garcia, Manuela Ferrario
{"title":"The role of pulse wave analysis indexes for critically ill patients: a narrative review.","authors":"Marta Carrara, Riccardo Campitelli, Diletta Guberti, M Ignacio Monge Garcia, Manuela Ferrario","doi":"10.1088/1361-6579/ad6acf","DOIUrl":"10.1088/1361-6579/ad6acf","url":null,"abstract":"<p><p><i>Objective.</i>Arterial pulse wave analysis (PWA) is now established as a powerful tool to investigate the cardiovascular system, and several clinical studies have shown how PWA can provide valuable prognostic information over and beyond traditional cardiovascular risk factors. Typically these techniques are applied to chronic conditions, such as hypertension or aging, to monitor the slow structural changes of the vascular system which lead to important alterations of the arterial PW. However, their application to acute critical illness is not currently widespread, probably because of the high hemodynamic instability and acute dynamic alterations affecting the cardiovascular system of these patients.<i>Approach.</i>In this work we propose a review of the physiological and methodological basis of PWA, describing how it can be used to provide insights into arterial structure and function, cardiovascular biomechanical properties, and to derive information on wave propagation and reflection.<i>Main results.</i>The applicability of these techniques to acute critical illness, especially septic shock, is extensively discussed, highlighting the feasibility of their use in acute critical patients and their role in optimizing therapy administration and hemodynamic monitoring.<i>Significance.</i>The potential for the clinical use of these techniques lies in the ease of computation and availability of arterial blood pressure signals, as invasive arterial lines are commonly used in these patients. We hope that the concepts illustrated in the present review will soon be translated into clinical practice.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An interpretable ensemble trees method with joint analysis of static and dynamic features for myocardial infarction detection. 利用静态和动态特征联合分析的可解释集合树方法检测心肌梗塞。
IF 2.3 4区 医学
Physiological measurement Pub Date : 2024-08-22 DOI: 10.1088/1361-6579/ad6529
Chunmiao Liang, Qinghua Sun, Jiali Li, Bing Ji, Weiming Wu, Fukai Zhang, Yuguo Chen, Cong Wang
{"title":"An interpretable ensemble trees method with joint analysis of static and dynamic features for myocardial infarction detection.","authors":"Chunmiao Liang, Qinghua Sun, Jiali Li, Bing Ji, Weiming Wu, Fukai Zhang, Yuguo Chen, Cong Wang","doi":"10.1088/1361-6579/ad6529","DOIUrl":"10.1088/1361-6579/ad6529","url":null,"abstract":"<p><p><i>Objective.</i>In recent years, artificial intelligence-based electrocardiogram (ECG) methods have been massively applied to myocardial infarction (MI). However, the joint analysis of static and dynamic features to achieve accurate and interpretable MI detection has not been comprehensively addressed.<i>Approach.</i>This paper proposes a simplified ensemble tree method with a joint analysis of static and dynamic features to solve this issue for MI detection. Initially, the dynamic features are extracted by modeling the intrinsic dynamics of ECG via dynamic learning in addition to extracting classical static features. Secondly, a two-stage feature selection strategy is designed to identify a few significant features, which substitute the original variables that are employed in constructing the ensemble tree. This approach enhances the discriminative ability by selecting significant static and dynamic features. Subsequently, this paper presents an interpretable classification method named StackTree by introducing a stacked ensemble scheme to modify the ensemble tree simplification algorithm. The representative rules of the raw ensemble trees are selected as the intermediate training data that is used to retrain a decision tree with performance close to that of the source ensemble model. Using this scheme, the significant precision and interpretability of MI detection are thus comprehensively addressed.<i>Main results.</i>The effectiveness of our method in detecting MI is evaluated using the Physikalisch-Technische Bundesanstalt (PTB) and clinical database. The findings suggest that our algorithm outperforms the traditional methods based on a single type of feature. Additionally, it is comparable to the conventional random forest, achieving 97.1% accuracy under the inter-patient framework on the PTB database. Furthermore, feature subsets trained on PTB are validated using the clinical database, resulting in an accuracy of 84.5%. The chosen important features demonstrate that both static and dynamic information have crucial roles in MI detection. Crucially, the proposed method provides clear internal workings in an easy-to-understand visual manner.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in electrical impedance tomography and bioimpedance. 电阻抗断层扫描和生物阻抗方面的进展。
IF 2.3 4区 医学
Physiological measurement Pub Date : 2024-08-19 DOI: 10.1088/1361-6579/ad68c1
Richard Bayford, Rosalind Sadleir, Inéz Frerichs, Tong In Oh, Steffen Leonhardt
{"title":"Progress in electrical impedance tomography and bioimpedance.","authors":"Richard Bayford, Rosalind Sadleir, Inéz Frerichs, Tong In Oh, Steffen Leonhardt","doi":"10.1088/1361-6579/ad68c1","DOIUrl":"10.1088/1361-6579/ad68c1","url":null,"abstract":"<p><p><i>Scope</i>. This focus collection aims at presenting recent advances in electrical impedance tomography (EIT), including algorithms, hardware, and clinical applications.<i>Editorial</i>. This focus collection of articles published by the journal<i>Physiological Measurement</i>introduces the Progress in EIT and Bioimpedance. It follows conferences in South Korea and Germany, that provided a platform for new research ideas.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting elevated left ventricular end diastolic pressure from simultaneously measured femoral pressure waveform and electrocardiogram. 从同时测量到的股压力波形和心电图中检测出左心室舒张末期压力升高。
IF 2.3 4区 医学
Physiological measurement Pub Date : 2024-08-14 DOI: 10.1088/1361-6579/ad69fd
Niema M Pahlevan, Rashid Alavi, Jing Liu, Melissa Ramos, Antreas Hindoyan, Ray V Matthews
{"title":"Detecting elevated left ventricular end diastolic pressure from simultaneously measured femoral pressure waveform and electrocardiogram.","authors":"Niema M Pahlevan, Rashid Alavi, Jing Liu, Melissa Ramos, Antreas Hindoyan, Ray V Matthews","doi":"10.1088/1361-6579/ad69fd","DOIUrl":"10.1088/1361-6579/ad69fd","url":null,"abstract":"<p><p><i>Objective.</i>Instantaneous, non-invasive evaluation of left ventricular end-diastolic pressure (LVEDP) would have significant value in the diagnosis and treatment of heart failure. A new approach called cardiac triangle mapping (CTM) has been recently proposed, which can provide a non-invasive estimate of LVEDP. We hypothesized that a hybrid machine-learning (ML) method based on CTM can instantaneously identify an elevated LVEDP using simultaneously measured femoral pressure waveform and electrocardiogram (ECG).<i>Approach.</i>We studied 46 patients (Age: 39-90 (66.4 ± 9.9), BMI: 20.2-36.8 (27.6 ± 4.1), 12 females) scheduled for clinical left heart catheterizations or coronary angiograms at University of Southern California Keck Medical Center. Exclusion criteria included severe mitral/aortic valve disease; severe carotid stenosis; aortic abnormalities; ventricular paced rhythm; left bundle branch and anterior fascicular blocks; interventricular conduction delay; and atrial fibrillation. Invasive LVEDP and pressure waveforms at the iliac bifurcation were measured using transducer-tipped Millar catheters with simultaneous ECG. LVEDP range was 9.3-40.5 mmHg. LVEDP = 18 mmHg was used as cutoff. Random forest (RF) classifiers were trained using data from 36 patients and blindly tested on 10 patients.<i>Main results.</i>Our proposed ML classifier models accurately predict true LVEDP classes using appropriate physics-based features, where the most accurate demonstrates 100.0% (elevated) and 80.0% (normal) success in predicting true LVEDP classes on blind data.<i>Significance.</i>We demonstrated that physics-based ML models can instantaneously classify LVEDP using information from femoral waveforms and ECGs. Although an invasive validation, the required ML inputs can be potentially obtained non-invasively.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age prediction from 12-lead electrocardiograms using deep learning: a comparison of four models on a contemporary, freely available dataset. 利用深度学习从 12 导联心电图预测年龄:在当代免费数据集上比较四种模型。
IF 2.3 4区 医学
Physiological measurement Pub Date : 2024-08-12 DOI: 10.1088/1361-6579/ad6746
Andrew Barros, Ian German Mesner, N Rich Nguyen, J Randall Moorman
{"title":"Age prediction from 12-lead electrocardiograms using deep learning: a comparison of four models on a contemporary, freely available dataset.","authors":"Andrew Barros, Ian German Mesner, N Rich Nguyen, J Randall Moorman","doi":"10.1088/1361-6579/ad6746","DOIUrl":"10.1088/1361-6579/ad6746","url":null,"abstract":"<p><p><i>Objective.</i>The 12-lead electrocardiogram (ECG) is routine in clinical use and deep learning approaches have been shown to have the identify features not immediately apparent to human interpreters including age and sex. Several models have been published but no direct comparisons exist.<i>Approach.</i>We implemented three previously published models and one unpublished model to predict age and sex from a 12-lead ECG and then compared their performance on an open-access data set.<i>Main results.</i>All models converged and were evaluated on the holdout set. The best preforming age prediction model had a hold-out set mean absolute error of 8.06 years. The best preforming sex prediction model had a hold-out set area under the receiver operating curve of 0.92.<i>Significance.</i>We compared performance of four models on an open-access dataset.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334242/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SiamQuality: a ConvNet-based foundation model for photoplethysmography signals. SiamQuality:基于 ConvNet 的光心动图信号基础模型。
IF 2.3 4区 医学
Physiological measurement Pub Date : 2024-08-12 DOI: 10.1088/1361-6579/ad6747
Cheng Ding, Zhicheng Guo, Zhaoliang Chen, Randall J Lee, Cynthia Rudin, Xiao Hu
{"title":"SiamQuality: a ConvNet-based foundation model for photoplethysmography signals.","authors":"Cheng Ding, Zhicheng Guo, Zhaoliang Chen, Randall J Lee, Cynthia Rudin, Xiao Hu","doi":"10.1088/1361-6579/ad6747","DOIUrl":"10.1088/1361-6579/ad6747","url":null,"abstract":"<p><p><i>Objective</i>. Physiological data are often low quality and thereby compromises the effectiveness of related health monitoring. The primary goal of this study is to develop a robust foundation model that can effectively handle low-quality issue in physiological data.<i>Approach</i>. We introduce SiamQuality, a self-supervised learning approach using convolutional neural networks (CNNs) as the backbone. SiamQuality learns to generate similar representations for both high and low quality photoplethysmography (PPG) signals that originate from similar physiological states. We leveraged a substantial dataset of PPG signals from hospitalized intensive care patients, comprised of over 36 million 30 s PPG pairs.<i>Main results</i>. After pre-training the SiamQuality model, it was fine-tuned and tested on six PPG downstream tasks focusing on cardiovascular monitoring. Notably, in tasks such as respiratory rate estimation and atrial fibrillation detection, the model's performance exceeded the state-of-the-art by 75% and 5%, respectively. The results highlight the effectiveness of our model across all evaluated tasks, demonstrating significant improvements, especially in applications for heart monitoring on wearable devices.<i>Significance</i>. This study underscores the potential of CNNs as a robust backbone for foundation models tailored to physiological data, emphasizing their capability to maintain performance despite variations in data quality. The success of the SiamQuality model in handling real-world, variable-quality data opens new avenues for the development of more reliable and efficient healthcare monitoring technologies.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334241/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveil sleep spindles with concentration of frequency and time (ConceFT). 通过集中频率和时间(ConceFT)揭开睡眠纺锤体的神秘面纱。
IF 2.3 4区 医学
Physiological measurement Pub Date : 2024-08-06 DOI: 10.1088/1361-6579/ad66aa
Riki Shimizu, Hau-Tieng Wu
{"title":"Unveil sleep spindles with concentration of frequency and time (ConceFT).","authors":"Riki Shimizu, Hau-Tieng Wu","doi":"10.1088/1361-6579/ad66aa","DOIUrl":"10.1088/1361-6579/ad66aa","url":null,"abstract":"<p><p><i>Objective.</i>Sleep spindles contain crucial brain dynamics information. We introduce the novel non-linear time-frequency (TF) analysis tool 'Concentration of Frequency and Time' (ConceFT) to create an interpretable automated algorithm for sleep spindle annotation in EEG data and to measure spindle instantaneous frequencies (IFs).<i>Approach.</i>ConceFT effectively reduces stochastic EEG influence, enhancing spindle visibility in the TF representation. Our automated spindle detection algorithm, ConceFT-Spindle (ConceFT-S), is compared to A7 (non-deep learning) and SUMO (deep learning) using Dream and Montreal Archive of Sleep Studies (MASS) benchmark databases. We also quantify spindle IF dynamics.<i>Main results.</i>ConceFT-S achieves F1 scores of 0.765 in Dream and 0.791 in MASS, which surpass A7 and SUMO. We reveal that spindle IF is generally nonlinear.<i>Significance.</i>ConceFT offers an accurate, interpretable EEG-based sleep spindle detection algorithm and enables spindle IF quantification.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信