Physiological measurement最新文献

筛选
英文 中文
Time delays between physiological signals in interpreting the body's responses to intermittent hypoxia in obstructive sleep apnea. 解读阻塞性睡眠呼吸暂停患者身体对间歇性缺氧反应的生理信号之间的时间延迟。
IF 3.2 4区 医学
Physiological measurement Pub Date : 2024-05-17 DOI: 10.1088/1361-6579/ad45ac
Geng Li, Mengwei Zhou, Xiaoqing Huang, Changjin Ji, Tingting Fan, Jinkun Xu, Huahui Xiong, Yaqi Huang
{"title":"Time delays between physiological signals in interpreting the body's responses to intermittent hypoxia in obstructive sleep apnea.","authors":"Geng Li, Mengwei Zhou, Xiaoqing Huang, Changjin Ji, Tingting Fan, Jinkun Xu, Huahui Xiong, Yaqi Huang","doi":"10.1088/1361-6579/ad45ac","DOIUrl":"10.1088/1361-6579/ad45ac","url":null,"abstract":"<p><p><i>Objective.</i>Intermittent hypoxia, the primary pathology of obstructive sleep apnea (OSA), causes cardiovascular responses resulting in changes in hemodynamic parameters such as stroke volume (SV), blood pressure (BP), and heart rate (HR). However, previous studies have produced very different conclusions, such as suggesting that SV increases or decreases during apnea. A key reason for drawing contrary conclusions from similar measurements may be due to ignoring the time delay in acquiring response signals. By analyzing the signals collected during hypoxia, we aim to establish criteria for determining the delay time between the onset of apnea and the onset of physiological parameter response.<i>Approach.</i>We monitored oxygen saturation (SpO<sub>2</sub>), transcutaneous oxygen pressure (TcPO<sub>2</sub>), and hemodynamic parameters SV, HR, and BP, during sleep in 66 patients with different OSA severity to observe body's response to hypoxia and determine the delay time of above parameters. Data were analyzed using the Kruskal-Wallis test, Quade test, and Spearman test.<i>Main results.</i>We found that simultaneous acquisition of various parameters inevitably involved varying degrees of response delay (7.12-25.60 s). The delay time of hemodynamic parameters was significantly shorter than that of SpO<sub>2</sub>and TcPO<sub>2</sub>(<i>p</i>< 0.01). OSA severity affected the response delay of SpO<sub>2</sub>, TcPO<sub>2</sub>, SV, mean BP, and HR (<i>p</i>< 0.05). SV delay time was negatively correlated with the apnea-hypopnea index (<i>r</i>= -0.4831,<i>p</i>< 0.0001).<i>Significance.</i>The real body response should be determined after removing the effect of delay time, which is the key to solve the problem of drawing contradictory conclusions from similar studies. The methods and important findings presented in this study provide key information for revealing the true response of the cardiovascular system during hypoxia, indicating the importance of proper signal analysis for correctly interpreting the cardiovascular hemodynamic response phenomena and exploring their physiological and pathophysiological mechanisms.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LUNet: deep learning for the segmentation of arterioles and venules in high resolution fundus images LUNet:深度学习用于分割高分辨率眼底图像中的动脉和静脉
IF 3.2 4区 医学
Physiological measurement Pub Date : 2024-05-02 DOI: 10.1088/1361-6579/ad3d28
Jonathan Fhima, Jan Van Eijgen, Marie-Isaline Billen Moulin-Romsée, Heloïse Brackenier, Hana Kulenovic, Valérie Debeuf, Marie Vangilbergen, Moti Freiman, Ingeborg Stalmans and Joachim A Behar
{"title":"LUNet: deep learning for the segmentation of arterioles and venules in high resolution fundus images","authors":"Jonathan Fhima, Jan Van Eijgen, Marie-Isaline Billen Moulin-Romsée, Heloïse Brackenier, Hana Kulenovic, Valérie Debeuf, Marie Vangilbergen, Moti Freiman, Ingeborg Stalmans and Joachim A Behar","doi":"10.1088/1361-6579/ad3d28","DOIUrl":"https://doi.org/10.1088/1361-6579/ad3d28","url":null,"abstract":"Objective. This study aims to automate the segmentation of retinal arterioles and venules (A/V) from digital fundus images (DFI), as changes in the spatial distribution of retinal microvasculature are indicative of cardiovascular diseases, positioning the eyes as windows to cardiovascular health. Approach. We utilized active learning to create a new DFI dataset with 240 crowd-sourced manual A/V segmentations performed by 15 medical students and reviewed by an ophthalmologist. We then developed LUNet, a novel deep learning architecture optimized for high-resolution A/V segmentation. The LUNet model features a double dilated convolutional block to widen the receptive field and reduce parameter count, alongside a high-resolution tail to refine segmentation details. A custom loss function was designed to prioritize the continuity of blood vessel segmentation. Main Results. LUNet significantly outperformed three benchmark A/V segmentation algorithms both on a local test set and on four external test sets that simulated variations in ethnicity, comorbidities and annotators. Significance. The release of the new datasets and the LUNet model (www.aimlab-technion.com/lirot-ai) provides a valuable resource for the advancement of retinal microvasculature analysis. The improvements in A/V segmentation accuracy highlight LUNet's potential as a robust tool for diagnosing and understanding cardiovascular diseases through retinal imaging.","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":"157 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoplethysmography based atrial fibrillation detection: a continually growing field. 基于血压计的心房颤动检测:一个不断发展的领域。
IF 3.2 4区 医学
Physiological measurement Pub Date : 2024-04-17 DOI: 10.1088/1361-6579/ad37ee
Cheng Ding, Ran Xiao, Weijia Wang, Elizabeth Holdsworth, Xiao Hu
{"title":"Photoplethysmography based atrial fibrillation detection: a continually growing field.","authors":"Cheng Ding, Ran Xiao, Weijia Wang, Elizabeth Holdsworth, Xiao Hu","doi":"10.1088/1361-6579/ad37ee","DOIUrl":"10.1088/1361-6579/ad37ee","url":null,"abstract":"<p><p><i>Objective.</i> Atrial fibrillation (AF) is a prevalent cardiac arrhythmia associated with significant health ramifications, including an elevated susceptibility to ischemic stroke, heart disease, and heightened mortality. Photoplethysmography (PPG) has emerged as a promising technology for continuous AF monitoring for its cost-effectiveness and widespread integration into wearable devices. Our team previously conducted an exhaustive review on PPG-based AF detection before June 2019. However, since then, more advanced technologies have emerged in this field.<i>Approach.</i> This paper offers a comprehensive review of the latest advancements in PPG-based AF detection, utilizing digital health and artificial intelligence (AI) solutions, within the timeframe spanning from July 2019 to December 2022. Through extensive exploration of scientific databases, we have identified 57 pertinent studies.<i>Significance.</i> Our comprehensive review encompasses an in-depth assessment of the statistical methodologies, traditional machine learning techniques, and deep learning approaches employed in these studies. In addition, we address the challenges encountered in the domain of PPG-based AF detection. Furthermore, we maintain a dedicated website to curate the latest research in this area, with regular updates on a regular basis.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity volume as figure-of-merit for maximizing data importance in electrical impedance tomography 灵敏度体积是最大化电阻抗断层扫描数据重要性的关键因素
IF 3.2 4区 医学
Physiological measurement Pub Date : 2024-04-16 DOI: 10.1088/1361-6579/ad3458
Claire C Onsager, Chulin Wang, Charles Costakis, Can C Aygen, Lauren Lang, Suzan van der Lee, Matthew A Grayson
{"title":"Sensitivity volume as figure-of-merit for maximizing data importance in electrical impedance tomography","authors":"Claire C Onsager, Chulin Wang, Charles Costakis, Can C Aygen, Lauren Lang, Suzan van der Lee, Matthew A Grayson","doi":"10.1088/1361-6579/ad3458","DOIUrl":"https://doi.org/10.1088/1361-6579/ad3458","url":null,"abstract":"<italic toggle=\"yes\">Objective.</italic> Electrical impedance tomography (EIT) is a noninvasive imaging method whereby electrical measurements on the periphery of a heterogeneous conductor are inverted to map its internal conductivity. The EIT method proposed here aims to improve computational speed and noise tolerance by introducing sensitivity volume as a figure-of-merit for comparing EIT measurement protocols. <italic toggle=\"yes\">Approach.</italic> Each measurement is shown to correspond to a sensitivity vector in model space, such that the set of measurements, in turn, corresponds to a set of vectors that subtend a sensitivity volume in model space. A maximal sensitivity volume identifies the measurement protocol with the greatest sensitivity and greatest mutual orthogonality. A distinguishability criterion is generalized to quantify the increased noise tolerance of high sensitivity measurements. <italic toggle=\"yes\">Main result.</italic> The sensitivity volume method allows the model space dimension to be minimized to match that of the data space, and the data importance to be increased within an expanded space of measurements defined by an increased number of contacts. <italic toggle=\"yes\">Significance.</italic> The reduction in model space dimension is shown to increase <italic toggle=\"yes\">computational efficiency</italic>, accelerating tomographic inversion by several orders of magnitude, while the enhanced sensitivity <italic toggle=\"yes\">tolerates higher noise</italic> levels up to several orders of magnitude larger than standard methods.","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":"48 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140613520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing pursed lips breathing of patients with chronic obstructive pulmonary disease through evaluation of global and regional ventilation using electrical impedance tomography. 通过使用电阻抗断层扫描评估整体和区域通气情况,实现慢性阻塞性肺病患者抿唇呼吸的可视化。
IF 3.2 4区 医学
Physiological measurement Pub Date : 2024-04-16 DOI: 10.1088/1361-6579/ad33a1
Lin Yang, Zhijun Gao, Xinsheng Cao, Chunchen Wang, Hang Wang, Jing Dai, Yang Liu, Yilong Qin, Meng Dai, Binghua Zhang, Ke Zhao, Zhanqi Zhao
{"title":"Visualizing pursed lips breathing of patients with chronic obstructive pulmonary disease through evaluation of global and regional ventilation using electrical impedance tomography.","authors":"Lin Yang, Zhijun Gao, Xinsheng Cao, Chunchen Wang, Hang Wang, Jing Dai, Yang Liu, Yilong Qin, Meng Dai, Binghua Zhang, Ke Zhao, Zhanqi Zhao","doi":"10.1088/1361-6579/ad33a1","DOIUrl":"10.1088/1361-6579/ad33a1","url":null,"abstract":"<p><p><i>Objective</i>. This study aims to explore the possibility of using electrical impedance tomography (EIT) to assess pursed lips breathing (PLB) performance of patients with chronic obstructive pulmonary disease (COPD).<i>Methods</i>. 32 patients with COPD were assigned equally to either the conventional group or the EIT guided group. All patients were taught to perform PLB by a physiotherapist without EIT in the conventional group or with EIT in the EIT guided group for 10 min. The ventilation of all patients in the final test were continuously monitored using EIT and the PLB performances were rated by another physiotherapist before and after reviewing EIT. The global and regional ventilation between two groups as well as between quite breathing (QB) and PLB were compared and rating scores with and without EIT were also compared.<i>Results.</i>For global ventilation, the inspiratory depth and the ratio of expiratory-to-inspiratory time during PLB was significantly larger than those during QB for both group (<i>P</i>< 0.001). The inspiratory depth and the ratio of expiratory-to-inspiratory time during PLB in the EIT guided group were higher compared to those in the conventional group (<i>P</i>< 0.001), as well as expiratory flow expiratory uniformity and respiratory stability were better (<i>P</i>< 0.001). For regional ventilation, center of ventilation significantly decreased during PLB (<i>P</i>< 0.05). The expiratory time constant during PLB in the EIT guided group was greater than that in the conventional group (<i>P</i>< 0.001). Additionally, Bland-Altman plots analysis suggested a high concordance between subjective rating and rating with the help of EIT, but the score rated after EIT observation significantly lower than that rated subjectively in both groups (score drop of -2.68 ± 1.1 in the conventional group and -1.19 ± 0.72 in the EIT guided group,<i>P</i>< 0.01).<i>Conclusion.</i>EIT could capture the details of PLB maneuver, which might be a potential tool to quantitatively evaluate PLB performance and thus assist physiotherapists to teach PLB maneuver to patients.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140120290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harmonization of three different accelerometers to classify the 24 h activity cycle. 协调三种不同加速度计,对 24 小时活动周期进行分类。
IF 3.2 4区 医学
Physiological measurement Pub Date : 2024-04-11 DOI: 10.1088/1361-6579/ad37ed
Benjamin D Boudreaux, Ginny M Frederick, Patrick J O'Connor, Ellen M Evans, Michael D Schmidt
{"title":"Harmonization of three different accelerometers to classify the 24 h activity cycle.","authors":"Benjamin D Boudreaux, Ginny M Frederick, Patrick J O'Connor, Ellen M Evans, Michael D Schmidt","doi":"10.1088/1361-6579/ad37ed","DOIUrl":"10.1088/1361-6579/ad37ed","url":null,"abstract":"<p><p>Increasing interest in measuring key components of the 24 h activity cycle (24-HAC) [sleep, sedentary behavior (SED), light physical activity (LPA), and moderate to vigorous physical activity (MVPA)] has led to a need for better methods. Single wrist-worn accelerometers and different self-report instruments can assess the 24-HAC but may not accurately classify time spent in the different components or be subject to recall errors.<i>Objective</i>. To overcome these limitations, the current study harmonized output from multiple complimentary research grade accelerometers and assessed the feasibility and logistical challenges of this approach.<i>Approach</i>. Participants (<i>n</i>= 108) wore an: (a) ActiGraph GT9X on the wrist, (b) activPAL3 on the thigh, and (c) ActiGraph GT3X+ on the hip for 7-10 d to capture the 24-HAC. Participant compliance with the measurement protocol was compared across devices and an algorithm was developed to harmonize data from the accelerometers. The resulting 24-HAC estimates were described within and across days.<i>Main results</i>. Usable data for each device was obtained from 94.3% to 96.7% of participants and 89.4% provided usable data from all three devices. Compliance with wear instructions ranged from 70.7% of days for the GT3X+ to 93.2% of days for the activPAL3. Harmonized estimates indicated that, on average, university students spent 34% of the 24 h day sleeping, 41% sedentary, 21% in LPA, and 4% in MVPA. These behaviors varied substantially by time of day and day of the week.<i>Significance</i>. It is feasible to use three accelerometers in combination to derive a harmonized estimate the 24-HAC. The use of multiple accelerometers can minimize gaps in 24-HAC data however, factors such as additional research costs, and higher participant and investigator burden, should also be considered.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blood flow restriction attenuates surface mechanomyography lateral and longitudinal, but not transverse oscillations during fatiguing exercise. 血流限制能减弱疲劳运动时表面机械肌电图的横向和纵向振荡,但不能减弱横向振荡。
IF 3.2 4区 医学
Physiological measurement Pub Date : 2024-04-09 DOI: 10.1088/1361-6579/ad360b
Ethan C Hill, Chris E Proppe, Paola M Rivera, Sean M Lubiak, David H Gonzalez Rojas, John E Lawson, Hwan Choi, Hansen Mansy, Joshua L Keller
{"title":"Blood flow restriction attenuates surface mechanomyography lateral and longitudinal, but not transverse oscillations during fatiguing exercise.","authors":"Ethan C Hill, Chris E Proppe, Paola M Rivera, Sean M Lubiak, David H Gonzalez Rojas, John E Lawson, Hwan Choi, Hansen Mansy, Joshua L Keller","doi":"10.1088/1361-6579/ad360b","DOIUrl":"10.1088/1361-6579/ad360b","url":null,"abstract":"<p><p><i>Objective</i>. Surface mechanomyography (sMMG) can measure oscillations of the activated muscle fibers in three axes (i.e.<i>X</i>,<i>Y</i>, and<i>Z</i>-axes) and has been used to describe motor unit activation patterns (<i>X</i>-axis). The application of blood flow restriction (BFR) is common in exercise studies, but the cuff may restrict muscle fiber oscillations. Therefore, the purpose of this investigation was to examine the acute effects of submaximal, fatiguing exercise with and without BFR on sMMG amplitude in the<i>X</i>,<i>Y</i>, and<i>Z</i>-axes among female participants.<i>Approach</i>. Sixteen females (21 ± 1 years) performed two separate exercise bouts to volitional exhaustion that consisted of unilateral, submaximal (50% maximal voluntary isometric contraction [MVIC]) intermittent, isometric, leg extensions with and without BFR. sMMG was recorded and examined across percent time to exhaustion (%TTE) in 20% increments. Separate 2-way repeated measures ANOVA models were constructed: (condition [BFR, non-BFR]) × (time [20, 40, 60, 80, and 100% TTE]) to examine absolute (m·s<sup>-2</sup>) and normalized (% of pretest MVIC) sMMG amplitude in the<i>X</i>-(sMMG-X),<i>Y</i>-(sMMG-Y), and<i>Z</i>-(sMMG-Z) axes.<i>Main results</i>. The absolute sMMG-X amplitude responses were attenuated with the application of BFR (mean ± SD = 0.236 ± 0.138 m·s<sup>-2</sup>) relative to non-BFR (0.366 ± 0.199 m·s<sup>-2</sup>, collapsed across time) and for sMMG-Y amplitude at 60%-100% of TTE (BFR range = 0.213-0.232 m·s<sup>-2</sup>versus non-BFR = 0.313-0.445 m·s<sup>-2</sup>). Normalizing sMMG to pretest MVIC removed most, but not all the attenuation which was still evident for sMMG-Y amplitude at 100% of TTE between BFR (72.9 ± 47.2%) and non-BFR (98.9 ± 53.1%). Interestingly, sMMG-Z amplitude was not affected by the application of BFR and progressively decreased across %TTE (0.332 ± 0.167 m·s<sup>-2</sup>to 0.219 ± 0.104 m·s<sup>-2</sup>, collapsed across condition.)<i>Significance</i>. The application of BFR attenuated sMMG-X and sMMG-Y amplitude, although normalizing sMMG removed most of this attenuation. Unlike the<i>X</i>and<i>Y</i>-axes, sMMG-Z amplitude was not affected by BFR and progressively decreased across each exercise bout potentially tracking the development of muscle fatigue.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pyPPG: a Python toolbox for comprehensive photoplethysmography signal analysis. pyPPG:用于综合分析光心动图信号的 Python 工具箱。
IF 3.2 4区 医学
Physiological measurement Pub Date : 2024-04-08 DOI: 10.1088/1361-6579/ad33a2
Márton Á Goda, Peter H Charlton, Joachim A Behar
{"title":"pyPPG: a Python toolbox for comprehensive photoplethysmography signal analysis.","authors":"Márton Á Goda, Peter H Charlton, Joachim A Behar","doi":"10.1088/1361-6579/ad33a2","DOIUrl":"10.1088/1361-6579/ad33a2","url":null,"abstract":"<p><p><i>Objective.</i>Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly used for a variety of research and clinical applications to assess vascular dynamics and physiological parameters. Yet, contrary to heart rate variability measures, a field which has seen the development of stable standards and advanced toolboxes and software, no such standards and limited open tools exist for continuous photoplethysmogram (PPG) analysis. Consequently, the primary objective of this research was to identify, standardize, implement and validate key digital PPG biomarkers.<i>Approach.</i>This work describes the creation of a standard Python toolbox, denoted<i>pyPPG</i>, for long-term continuous PPG time-series analysis and demonstrates the detection and computation of a high number of fiducial points and digital biomarkers using a standard fingerbased transmission pulse oximeter.<i>Main results.</i>The improved PPG peak detector had an F1-score of 88.19% for the state-of-the-art benchmark when evaluated on 2054 adult polysomnography recordings totaling over 91 million reference beats. The algorithm outperformed the open-source original Matlab implementation by ∼5% when benchmarked on a subset of 100 randomly selected MESA recordings. More than 3000 fiducial points were manually annotated by two annotators in order to validate the fiducial points detector. The detector consistently demonstrated high performance, with a mean absolute error of less than 10 ms for all fiducial points.<i>Significance.</i>Based on these fiducial points,<i>pyPPG</i>engineered a set of 74 PPG biomarkers. Studying PPG time-series variability using<i>pyPPG</i>can enhance our understanding of the manifestations and etiology of diseases. This toolbox can also be used for biomarker engineering in training data-driven models.<i>pyPPG</i>is available onhttps://physiozoo.com/.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140120289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsupervised ensembling of multiple software sensors with phase synchronization: a robust approach for electrocardiogram-derived respiration. 具有相位同步功能的多软件传感器无监督组合:一种用于心电图衍生呼吸的稳健方法。
IF 3.2 4区 医学
Physiological measurement Pub Date : 2024-04-03 DOI: 10.1088/1361-6579/ad290b
Jacob McErlean, John Malik, Yu-Ting Lin, Ronen Talmon, Hau-Tieng Wu
{"title":"Unsupervised ensembling of multiple software sensors with phase synchronization: a robust approach for electrocardiogram-derived respiration.","authors":"Jacob McErlean, John Malik, Yu-Ting Lin, Ronen Talmon, Hau-Tieng Wu","doi":"10.1088/1361-6579/ad290b","DOIUrl":"10.1088/1361-6579/ad290b","url":null,"abstract":"<p><p><i>Objective.</i>We aimed to fuse the outputs of different electrocardiogram-derived respiration (EDR) algorithms to create one higher quality EDR signal.<i>Methods.</i>We viewed each EDR algorithm as a software sensor that recorded breathing activity from a different vantage point, identified high-quality software sensors based on the respiratory signal quality index, aligned the highest-quality EDRs with a phase synchronization technique based on the graph connection Laplacian, and finally fused those aligned, high-quality EDRs. We refer to the output as the sync-ensembled EDR signal. The proposed algorithm was evaluated on two large-scale databases of whole-night polysomnograms. We evaluated the performance of the proposed algorithm using three respiratory signals recorded from different hardware sensors, and compared it with other existing EDR algorithms. A sensitivity analysis was carried out for a total of five cases: fusion by taking the mean of EDR signals, and the four cases of EDR signal alignment without and with synchronization and without and with signal quality selection.<i>Results.</i>The sync-ensembled EDR algorithm outperforms existing EDR algorithms when evaluated by the synchronized correlation (γ-score), optimal transport (OT) distance, and estimated average respiratory rate score, all with statistical significance. The sensitivity analysis shows that the signal quality selection and EDR signal alignment are both critical for the performance, both with statistical significance.<i>Conclusion.</i>The sync-ensembled EDR provides robust respiratory information from electrocardiogram.<i>Significance.</i>Phase synchronization is not only theoretically rigorous but also practical to design a robust EDR.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Respiratory gating improves correlation between pulse wave transit time and pulmonary artery pressure in experimental pulmonary hypertension. 呼吸门控改善了实验性肺动脉高压患者脉搏波通过时间与肺动脉压力之间的相关性。
IF 3.2 4区 医学
Physiological measurement Pub Date : 2024-03-29 DOI: 10.1088/1361-6579/ad2eb5
Fabian Mueller-Graf, Paul Frenkel, Jonas Merz, Susanne Reuter, Brigitte Vollmar, Gerardo Tusman, Sven Pulletz, Stephan H Böhm, Amelie Zitzmann, Daniel A Reuter, Andy Adler
{"title":"Respiratory gating improves correlation between pulse wave transit time and pulmonary artery pressure in experimental pulmonary hypertension.","authors":"Fabian Mueller-Graf, Paul Frenkel, Jonas Merz, Susanne Reuter, Brigitte Vollmar, Gerardo Tusman, Sven Pulletz, Stephan H Böhm, Amelie Zitzmann, Daniel A Reuter, Andy Adler","doi":"10.1088/1361-6579/ad2eb5","DOIUrl":"10.1088/1361-6579/ad2eb5","url":null,"abstract":"<p><p><i>Objective</i>. Since pulse wave transit time (PWTT) shortens as pulmonary artery pressure (PAP) increases it was suggested as a potential non-invasive surrogate for PAP. The state of tidal lung filling is also known to affect PWTT independently of PAP. The aim of this retrospective analysis was to test whether respiratory gating improved the correlation coefficient between PWTT and PAP.<i>Approach</i>. In each one of five anesthetized and mechanically ventilated pigs two high-fidelity pressure catheters were placed, one directly behind the pulmonary valve, and the second one in a distal branch of the pulmonary artery. PAP was raised using the thromboxane A2 analogue U46619 and animals were ventilated in a pressure controlled mode (I:E ratio 1:2, respiratory rate 12/min, tidal volume of 6 ml kg<sup>-1</sup>). All signals were recorded using the multi-channel platform PowerLab<sup>®</sup>. The arrival of the pulse wave at each catheter tip was determined using a MATLAB-based modified hyperbolic tangent algorithm and PWTT calculated as the time interval between these arrivals.<i>Main results</i>. Correlation coefficient for PWTT and mean PAP was<i>r</i>= 0.932 for thromboxane. This correlation coefficient increased considerably when heart beats either at end-inspiration (<i>r</i>= 0.978) or at end-expiration (<i>r</i>= 0.985) were selected (=respiratory gating).<i>Significance</i>. The estimation of mean PAP from PWTT improved significantly when taking the respiratory cycle into account. Respiratory gating is suggested to improve for the estimation of PAP by PWTT.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139997044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信