Insun Park, Jae Hyon Park, Bon-Wook Koo, Jin-Hee Kim, Young-Tae Jeon, Hyo-Seok Na, Ah-Young Oh
{"title":"利用中心静脉压力波形预测每搏量变化:一种深度学习方法。","authors":"Insun Park, Jae Hyon Park, Bon-Wook Koo, Jin-Hee Kim, Young-Tae Jeon, Hyo-Seok Na, Ah-Young Oh","doi":"10.1088/1361-6579/ad75e4","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. This study evaluated the predictive performance of a deep learning approach to predict stroke volume variation (SVV) from central venous pressure (CVP) waveforms.<i>Approach</i>. Long short-term memory (LSTM) and the feed-forward neural network were sequenced to predict SVV using CVP waveforms obtained from the VitalDB database, an open-source registry. The input for the LSTM consisted of 10 s CVP waveforms sampled at 2 s intervals throughout the anesthesia duration. Inputs of the feed-forward network were the outputs of LSTM and demographic data such as age, sex, weight, and height. The final output of the feed-forward network was the SVV. The performance of SVV predicted by the deep learning model was compared to SVV estimated derived from arterial pulse waveform analysis using a commercialized model, EV1000.<i>Main results</i>. The model hyperparameters consisted of 12 memory cells in the LSTM layer and 32 nodes in the hidden layer of the feed-forward network. A total of 224 cases comprising 1717 978 CVP waveforms and EV1000/SVV data were used to construct and test the deep learning models. The concordance correlation coefficient between estimated SVV from the deep learning model were 0.993 (95% confidence interval, 0.992-0.993) for SVV measured by EV1000.<i>Significance</i>. Using a deep learning approach, CVP waveforms can accurately approximate SVV values close to those estimated using commercial arterial pulse waveform analysis.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting stroke volume variation using central venous pressure waveform: a deep learning approach.\",\"authors\":\"Insun Park, Jae Hyon Park, Bon-Wook Koo, Jin-Hee Kim, Young-Tae Jeon, Hyo-Seok Na, Ah-Young Oh\",\"doi\":\"10.1088/1361-6579/ad75e4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. This study evaluated the predictive performance of a deep learning approach to predict stroke volume variation (SVV) from central venous pressure (CVP) waveforms.<i>Approach</i>. Long short-term memory (LSTM) and the feed-forward neural network were sequenced to predict SVV using CVP waveforms obtained from the VitalDB database, an open-source registry. The input for the LSTM consisted of 10 s CVP waveforms sampled at 2 s intervals throughout the anesthesia duration. Inputs of the feed-forward network were the outputs of LSTM and demographic data such as age, sex, weight, and height. The final output of the feed-forward network was the SVV. The performance of SVV predicted by the deep learning model was compared to SVV estimated derived from arterial pulse waveform analysis using a commercialized model, EV1000.<i>Main results</i>. The model hyperparameters consisted of 12 memory cells in the LSTM layer and 32 nodes in the hidden layer of the feed-forward network. A total of 224 cases comprising 1717 978 CVP waveforms and EV1000/SVV data were used to construct and test the deep learning models. The concordance correlation coefficient between estimated SVV from the deep learning model were 0.993 (95% confidence interval, 0.992-0.993) for SVV measured by EV1000.<i>Significance</i>. Using a deep learning approach, CVP waveforms can accurately approximate SVV values close to those estimated using commercial arterial pulse waveform analysis.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad75e4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad75e4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Predicting stroke volume variation using central venous pressure waveform: a deep learning approach.
Objective. This study evaluated the predictive performance of a deep learning approach to predict stroke volume variation (SVV) from central venous pressure (CVP) waveforms.Approach. Long short-term memory (LSTM) and the feed-forward neural network were sequenced to predict SVV using CVP waveforms obtained from the VitalDB database, an open-source registry. The input for the LSTM consisted of 10 s CVP waveforms sampled at 2 s intervals throughout the anesthesia duration. Inputs of the feed-forward network were the outputs of LSTM and demographic data such as age, sex, weight, and height. The final output of the feed-forward network was the SVV. The performance of SVV predicted by the deep learning model was compared to SVV estimated derived from arterial pulse waveform analysis using a commercialized model, EV1000.Main results. The model hyperparameters consisted of 12 memory cells in the LSTM layer and 32 nodes in the hidden layer of the feed-forward network. A total of 224 cases comprising 1717 978 CVP waveforms and EV1000/SVV data were used to construct and test the deep learning models. The concordance correlation coefficient between estimated SVV from the deep learning model were 0.993 (95% confidence interval, 0.992-0.993) for SVV measured by EV1000.Significance. Using a deep learning approach, CVP waveforms can accurately approximate SVV values close to those estimated using commercial arterial pulse waveform analysis.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.