信号长度和窗口大小对心率变异性和脉搏变异性指标的影响。

IF 2.3 4区 医学 Q3 BIOPHYSICS
Agnieszka Uryga, Bartosz Olszewski, Damian Pietroń, Magdalena Kasprowicz
{"title":"信号长度和窗口大小对心率变异性和脉搏变异性指标的影响。","authors":"Agnieszka Uryga, Bartosz Olszewski, Damian Pietroń, Magdalena Kasprowicz","doi":"10.1088/1361-6579/adece2","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. There is growing interest in the use of physiological signals beyond electrocardiography (ECG), particularly photoplethysmography-based noninvasive arterial blood pressure (nABP), to assess autonomic nervous system (ANS) activity with minimal recording durations. This study compared heart rate variability (HRV) and pulse rate variability (PRV) derived from ECG and nABP, respectively. We investigated how signal shortening and calculation window size affect time-domain, frequency-domain, and nonlinear ANS metrics.<i>Approach</i>. Photoplethysmography was used to measure nABP, whereas ECG was recorded with a 3-lead device in healthy individuals (18-31 years). The HRV and PRV were analyzed using time- and frequency-domain metrics, and nonlinear indices, including entropy metrics and Poincaré plots (SD1, SD2). Agreement between signal lengths of 3 min and 5 min was assessed in 86 nABP and 70 ECG participants using intraclass correlation coefficients (ICCs). To evaluate the effect of window size, 15 min recordings from 16 participants were segmented into windows of 3 min, 5 min, and 15 min. HRV-PRV agreement was evaluated using Bland-Altman analysis.<i>Main results</i>. The time-domain metrics demonstrated excellent reproducibility when the signal length (ICCs ⩾ 0.96) and window size (ICCs ⩾ 0.98) were shortened, but moderate agreement between HRV and PRV. Entropy metrics were most affected by signal shortening (e.g. HRV multiscale entropy ICC (95%CI]): 0.67 (0.47-0.80); PRV approximate entropy: 0.45 (0.15-0.64)). Shorter window sizes affected selected ANS metrics, including reduced SD2 (<i>p</i>= 0.003 for HRV,<i>p</i>< 0.001 for PRV) and increased frequency-domain values (<i>p</i>< 0.001 for HRV and PRV).<i>Significance</i>. Time-domain metrics are more robust to reductions in signal length and calculation window size but demonstrate lower interchangeability between HRV and PRV. Both signal length and window size influence selected ANS metrics and should be considered, particularly when employing entropy-based indices in wearable, remote, and short-duration physiological monitoring.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of signal length and window size on heart rate variability and pulse rate variability metrics.\",\"authors\":\"Agnieszka Uryga, Bartosz Olszewski, Damian Pietroń, Magdalena Kasprowicz\",\"doi\":\"10.1088/1361-6579/adece2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. There is growing interest in the use of physiological signals beyond electrocardiography (ECG), particularly photoplethysmography-based noninvasive arterial blood pressure (nABP), to assess autonomic nervous system (ANS) activity with minimal recording durations. This study compared heart rate variability (HRV) and pulse rate variability (PRV) derived from ECG and nABP, respectively. We investigated how signal shortening and calculation window size affect time-domain, frequency-domain, and nonlinear ANS metrics.<i>Approach</i>. Photoplethysmography was used to measure nABP, whereas ECG was recorded with a 3-lead device in healthy individuals (18-31 years). The HRV and PRV were analyzed using time- and frequency-domain metrics, and nonlinear indices, including entropy metrics and Poincaré plots (SD1, SD2). Agreement between signal lengths of 3 min and 5 min was assessed in 86 nABP and 70 ECG participants using intraclass correlation coefficients (ICCs). To evaluate the effect of window size, 15 min recordings from 16 participants were segmented into windows of 3 min, 5 min, and 15 min. HRV-PRV agreement was evaluated using Bland-Altman analysis.<i>Main results</i>. The time-domain metrics demonstrated excellent reproducibility when the signal length (ICCs ⩾ 0.96) and window size (ICCs ⩾ 0.98) were shortened, but moderate agreement between HRV and PRV. Entropy metrics were most affected by signal shortening (e.g. HRV multiscale entropy ICC (95%CI]): 0.67 (0.47-0.80); PRV approximate entropy: 0.45 (0.15-0.64)). Shorter window sizes affected selected ANS metrics, including reduced SD2 (<i>p</i>= 0.003 for HRV,<i>p</i>< 0.001 for PRV) and increased frequency-domain values (<i>p</i>< 0.001 for HRV and PRV).<i>Significance</i>. Time-domain metrics are more robust to reductions in signal length and calculation window size but demonstrate lower interchangeability between HRV and PRV. Both signal length and window size influence selected ANS metrics and should be considered, particularly when employing entropy-based indices in wearable, remote, and short-duration physiological monitoring.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/adece2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/adece2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:越来越多的人对使用心电图(ECG)以外的生理信号,特别是基于光体积描记术的无创动脉血压(nABP),在最短的记录时间内评估自主神经系统(ANS)的活动感兴趣。本研究比较了心率变异性(HRV)和脉率变异性(PRV)分别来自ECG和nABP。我们研究了信号缩短和计算窗口大小如何影响时域、频域和非线性ANS指标。 ;方法 ;Photoplethysmography用于测量nABP,而在健康个体(18-31岁)中使用3导联装置记录心电图。利用时域和频域指标以及非线性指标,包括熵指标和poincar图(SD1, SD2)对HRV和PRV进行分析。使用类内相关系数(ICCs)对86名(nABP)和70名(ECG)参与者的3分钟和5分钟信号长度之间的一致性进行评估。为了评估窗口大小的影响,将16名参与者的15分钟记录分割为3分钟、5分钟和15分钟的窗口。使用Bland-Altman分析评估HRV-PRV一致性。主要结果 ;当信号长度(ICCs≥0.96)和窗口大小(ICCs≥0.98)缩短时,时域指标显示出良好的再现性,但HRV和PRV之间的一致性中等。熵指标受信号缩短的影响最大(例如,HRV多尺度熵ICC [95%CI]: 0.67 [0.47-0.80];PRV近似熵:0.45[0.15-0.64])。较短的窗口大小影响了选定的ANS指标,包括SD2降低(HRV p=0.003, p=0.003)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of signal length and window size on heart rate variability and pulse rate variability metrics.

Objective. There is growing interest in the use of physiological signals beyond electrocardiography (ECG), particularly photoplethysmography-based noninvasive arterial blood pressure (nABP), to assess autonomic nervous system (ANS) activity with minimal recording durations. This study compared heart rate variability (HRV) and pulse rate variability (PRV) derived from ECG and nABP, respectively. We investigated how signal shortening and calculation window size affect time-domain, frequency-domain, and nonlinear ANS metrics.Approach. Photoplethysmography was used to measure nABP, whereas ECG was recorded with a 3-lead device in healthy individuals (18-31 years). The HRV and PRV were analyzed using time- and frequency-domain metrics, and nonlinear indices, including entropy metrics and Poincaré plots (SD1, SD2). Agreement between signal lengths of 3 min and 5 min was assessed in 86 nABP and 70 ECG participants using intraclass correlation coefficients (ICCs). To evaluate the effect of window size, 15 min recordings from 16 participants were segmented into windows of 3 min, 5 min, and 15 min. HRV-PRV agreement was evaluated using Bland-Altman analysis.Main results. The time-domain metrics demonstrated excellent reproducibility when the signal length (ICCs ⩾ 0.96) and window size (ICCs ⩾ 0.98) were shortened, but moderate agreement between HRV and PRV. Entropy metrics were most affected by signal shortening (e.g. HRV multiscale entropy ICC (95%CI]): 0.67 (0.47-0.80); PRV approximate entropy: 0.45 (0.15-0.64)). Shorter window sizes affected selected ANS metrics, including reduced SD2 (p= 0.003 for HRV,p< 0.001 for PRV) and increased frequency-domain values (p< 0.001 for HRV and PRV).Significance. Time-domain metrics are more robust to reductions in signal length and calculation window size but demonstrate lower interchangeability between HRV and PRV. Both signal length and window size influence selected ANS metrics and should be considered, particularly when employing entropy-based indices in wearable, remote, and short-duration physiological monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信