{"title":"ModelS4Apnea:利用结构化状态空间模型从ECG信号中有效检测睡眠呼吸暂停。","authors":"Hasan Zan","doi":"10.1088/1361-6579/adebdd","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Sleep apnea is a common sleep disorder associated with severe health risks, necessitating accurate and efficient detection methods.<i>Approach</i>. This study proposes ModelS4Apnea, a deep learning framework for sleep apnea detection from electrocardiogram (ECG) spectrograms, integrating structured state space models (S4) for temporal modeling. The framework consists of a convolutional neural network module for local feature extraction, an S4 module for capturing long-range dependencies, and a classification module for final predictions.<i>Main results</i>. The model was trained and evaluated on the Apnea-ECG dataset, achieving an accuracy of 0.933, an<i>F</i>1-score of 0.912, a sensitivity of 0.916, and a specificity of 0.944, outperforming most prior studies while maintaining computational efficiency.<i>Significance</i>. Compared to existing methods, ModelS4Apnea provides high classification performance with significantly fewer trainable parameters than long short-term memory-based models, reducing training time and memory consumption. The model's ability to aggregate segment-level predictions enabled perfect per-recording classification, demonstrating its robustness in diagnosing sleep apnea across entire recordings. Moreover, its low memory footprint and fast inference speed make it well-suited for wearable devices, home-based monitoring, and clinical applications, offering a scalable and efficient solution for automated sleep apnea detection. Future work may explore multi-modal data integration, real-world deployment, and further optimizations to enhance its clinical applicability and reliability.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ModelS4Apnea: leveraging structured state space models for efficient sleep apnea detection from ECG signals.\",\"authors\":\"Hasan Zan\",\"doi\":\"10.1088/1361-6579/adebdd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Sleep apnea is a common sleep disorder associated with severe health risks, necessitating accurate and efficient detection methods.<i>Approach</i>. This study proposes ModelS4Apnea, a deep learning framework for sleep apnea detection from electrocardiogram (ECG) spectrograms, integrating structured state space models (S4) for temporal modeling. The framework consists of a convolutional neural network module for local feature extraction, an S4 module for capturing long-range dependencies, and a classification module for final predictions.<i>Main results</i>. The model was trained and evaluated on the Apnea-ECG dataset, achieving an accuracy of 0.933, an<i>F</i>1-score of 0.912, a sensitivity of 0.916, and a specificity of 0.944, outperforming most prior studies while maintaining computational efficiency.<i>Significance</i>. Compared to existing methods, ModelS4Apnea provides high classification performance with significantly fewer trainable parameters than long short-term memory-based models, reducing training time and memory consumption. The model's ability to aggregate segment-level predictions enabled perfect per-recording classification, demonstrating its robustness in diagnosing sleep apnea across entire recordings. Moreover, its low memory footprint and fast inference speed make it well-suited for wearable devices, home-based monitoring, and clinical applications, offering a scalable and efficient solution for automated sleep apnea detection. Future work may explore multi-modal data integration, real-world deployment, and further optimizations to enhance its clinical applicability and reliability.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/adebdd\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/adebdd","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
ModelS4Apnea: leveraging structured state space models for efficient sleep apnea detection from ECG signals.
Objective. Sleep apnea is a common sleep disorder associated with severe health risks, necessitating accurate and efficient detection methods.Approach. This study proposes ModelS4Apnea, a deep learning framework for sleep apnea detection from electrocardiogram (ECG) spectrograms, integrating structured state space models (S4) for temporal modeling. The framework consists of a convolutional neural network module for local feature extraction, an S4 module for capturing long-range dependencies, and a classification module for final predictions.Main results. The model was trained and evaluated on the Apnea-ECG dataset, achieving an accuracy of 0.933, anF1-score of 0.912, a sensitivity of 0.916, and a specificity of 0.944, outperforming most prior studies while maintaining computational efficiency.Significance. Compared to existing methods, ModelS4Apnea provides high classification performance with significantly fewer trainable parameters than long short-term memory-based models, reducing training time and memory consumption. The model's ability to aggregate segment-level predictions enabled perfect per-recording classification, demonstrating its robustness in diagnosing sleep apnea across entire recordings. Moreover, its low memory footprint and fast inference speed make it well-suited for wearable devices, home-based monitoring, and clinical applications, offering a scalable and efficient solution for automated sleep apnea detection. Future work may explore multi-modal data integration, real-world deployment, and further optimizations to enhance its clinical applicability and reliability.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.