Вестник КРАУНЦ. Физико-математические науки最新文献

筛选
英文 中文
RAPID — модель быстрой регистрации и трекинга зрачка глаза с помощью модифицированного метаэвристического метода дифференциальной эволюции на основе уравнения Ферхюльста-Пирла RAPID是一种快速注册和跟踪瞳孔的模型,使用费赫斯特-皮尔方程改进的元启发式微分进化方法。
Вестник КРАУНЦ. Физико-математические науки Pub Date : 2022-05-20 DOI: 10.26117/2079-6641-2022-38-1-84-105
Y. Grushko
{"title":"RAPID — модель быстрой регистрации и трекинга зрачка глаза с помощью модифицированного метаэвристического метода дифференциальной эволюции на основе уравнения Ферхюльста-Пирла","authors":"Y. Grushko","doi":"10.26117/2079-6641-2022-38-1-84-105","DOIUrl":"https://doi.org/10.26117/2079-6641-2022-38-1-84-105","url":null,"abstract":"This paper proposes a model of fast registration and pupil tracking — «RAPID», for devices with limited computing resource (weak personal computers, smartphones, embedded systems based on ARM architecture) in order to reduce the cost of technology for individual use by people with disabilities and medical institutions. The model is based on the idea of representing the process of video oculography as a multidimensional global optimization problem and its solution by the metaheuristic method of differential evolution. The optimization problem (objective function) is formalized as a search for the region that approximates the pupil in the three-dimensional parameter space most completely — the position and approximate size of the pupil. For the considered optimization problem we propose a modification of differential evolution method based on the process of formation of genetic isolations of population of solutions in the neighborhood of all local and global extremums of the target function followed by growth of the most adapted isolation (near the global extremum) and degeneration of others according to the differential Verhulst-Pearl equation. This behavior makes the search algorithm less «greedy» and makes it possible to correctly extract the pupil from the full frame. The developed tracking model can be used in the development of software packages in the task of augmentative communication for patients with lateral amyotrophic sclerosis or diplegia syndromes, on non-specialized devices, as well as in ophthalmological complexes and infrared-pupillometers.\u0000 В работе предлагается модель быстрой регистрации и трекинга зрачка «RAPID» для устройств с ограниченным вычислительным ресурсом (слабые персональные компьютеры, смартфоны, встраиваемые системы на базе архитектуры ARM) с целью снижения стоимости технологии для индивидуального использования людьми с ограниченными возможностями и медицинскими учреждениями. В основу модели легла идея представления процесса видеоокулографии, как задачи многомерной глобальной оптимизации и ее решение метаэвристическим методом дифференциальной эволюции. Задача оптимизации (целевая функция) формализована, как поиск региона, наиболее полно аппроксимирующего зрачок в трёхмерном пространстве параметров – положение и приблизительный размер зрачка. Для рассматриваемой задачи оптимизации предложена модификация метода дифференциальной эволюции, в основе которого лежит процесс формирования генетических изоляций популяции решений в окрестностях всех локальных и глобальных экстремумов целевой функции, с последующим ростом наиболее приспособленной изоляции (рядом с глобальным экстремумом) и вырождением иных, в соответствии с дифференциальным уравнением Ферхюльста-Пирла. Данное поведение делает алгоритм поиска менее «жадным» и дает возможность корректно выделять зрачок из полного кадра. Разработанная модель трекинга может быть использована при разработке программных комплексов в задаче аугментативной коммуникации для пациентов с с","PeriodicalId":200421,"journal":{"name":"Вестник КРАУНЦ. Физико-математические науки","volume":"84 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120858635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computer experiment in teaching mathematical disciplines 数学学科教学中的计算机实验
Вестник КРАУНЦ. Физико-математические науки Pub Date : 2022-05-20 DOI: 10.26117/2079-6641-2022-38-1-74-83
А.П. Горюшкин
{"title":"Computer experiment in teaching mathematical disciplines","authors":"А.П. Горюшкин","doi":"10.26117/2079-6641-2022-38-1-74-83","DOIUrl":"https://doi.org/10.26117/2079-6641-2022-38-1-74-83","url":null,"abstract":"Обсуждается методика использования компьютера при изучении вузовских курсов «Дискретная математика» и «Теория графов». В работе показывается применение пакета символьных вычислений Maple для обнаружения свойств основных матриц графа и экспериментальной проверки этих свойств.\u0000 The method of using a computer in the study of university courses «Discrete Mathematics» and «Graph Theory» is discussed. The paper shows the use of the symbolic computing package Maple to detect the properties of the main matrices of the graph and experimental verification of these properties.","PeriodicalId":200421,"journal":{"name":"Вестник КРАУНЦ. Физико-математические науки","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123435311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invariant manifolds and the global attractor of the generalised nonlocal Ginzburg-Landau equation in the case of homogeneous Dirichlet boundary conditions 齐次Dirichlet边界条件下广义非局部Ginzburg-Landau方程的不变流形和全局吸引子
Вестник КРАУНЦ. Физико-математические науки Pub Date : 2022-05-20 DOI: 10.26117/2079-6641-2022-38-1-9-27
А.Н. Куликов, Д.А. Куликов
{"title":"Invariant manifolds and the global attractor of the generalised nonlocal Ginzburg-Landau equation in the case of homogeneous Dirichlet boundary conditions","authors":"А.Н. Куликов, Д.А. Куликов","doi":"10.26117/2079-6641-2022-38-1-9-27","DOIUrl":"https://doi.org/10.26117/2079-6641-2022-38-1-9-27","url":null,"abstract":"Рассматриваются два варианта обобщенного нелокального уравнения Гинзбурга-Ландау. Оба эти варианта изучаются вместе с однородными краевыми условиями Дирихле. Для соответствующих начально-краевых задач показано существование решений при всех положительных значениях эволюционной переменной. Для решений начально-краевых задач получены явные формулы в виде рядов Фурье. Изучены свойстварешений соответствующих начально-краевых задач. Во второй части работы рассмотрен вопрос о существовании глобальных аттракторов для решений изучаемых краевых задач. Изучен вопрос о свойствах глобальных аттракторов. В частности, дан ответ о евклидовой размерности таких аттракторов.Приведены достаточные условия, при которых глобальный аттрактор будет конечномерным. Выделен вариант нелокального уравнения Гинзбурга-Ландау, когда глобальный аттрактор будет бесконечномерным.\u0000 Two versions of the generalized nonlocal Ginzburg-Landau equation are considered. Both of these options are studied together with the homogeneous Dirichlet boundary conditions. For the corresponding initial-boundary value problems, the existence of solutions is shown for all positive values of the evolution variable. For solutions to initial-boundary value problems, explicit formulas are obtained in the form of Fourier series. The properties of solutions of the corresponding initial-boundary value problems are studied. In the second part of the work, the question of the existence of global attractors for solutions to the studied boundary value problems is considered. The question of the properties of global attractors is studied. In particular, an answer is given about the Euclidean dimension of such attractors. Sufficient conditions are given under which the global attractor will be finite-dimensional. A variant of the nonlocal Ginzburg-Landau equation is distinguished, when the global attractor is infinite-dimensional.","PeriodicalId":200421,"journal":{"name":"Вестник КРАУНЦ. Физико-математические науки","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115945289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of radionuclide intake in humans living in the area affected by the Semipalatinsk test site 生活在受塞米巴拉金斯克试验场影响地区的人的放射性核素摄入模拟
Вестник КРАУНЦ. Физико-математические науки Pub Date : 2022-05-20 DOI: 10.26117/2079-6641-2022-38-1-147-165
Е.В. Романенко, М.А. Умаров, Г.А. Яковлев
{"title":"Modeling of radionuclide intake in humans living in the area affected by the Semipalatinsk test site","authors":"Е.В. Романенко, М.А. Умаров, Г.А. Яковлев","doi":"10.26117/2079-6641-2022-38-1-147-165","DOIUrl":"https://doi.org/10.26117/2079-6641-2022-38-1-147-165","url":null,"abstract":"В данной работе в качестве объекта исследования выбрано село Бодене в Бескарагайском районе Восточно-Казахстанской области Казахстана, так как оно находится близко к площадке испытательного ядерного полигона и обладает большим накопленным массивом данных по радиоэкологической обстановке. Как часть исследования было проведено анкетирование, позволившее составить статистику о населении села, а также об особенностях питания и видах деятельности постоянных жителей. В работе было проведено моделирование поступления техногенных радионуклидов в организм человека, проживающего и ведущего сельскохозяйственную деятельность на территории, подверженной влиянию Семипалатинского испытательного полигона. Приведены расчеты по поступлению радионуклидов с растительной и животной пищей, а также ингаляционным путем. Данные исследования позволяют составить оценки и прогноз дозовой нагрузки. При этом важно отметить, что превышения радиационных норм не было обнаружено. Загрязненная пища является основным фактором риска для здоровья человека, поэтому следует уделить большее внимание мониторингу дозовой нагрузки в радиоэкологически неблагополучных районах. Методика проведения исследования может быть использована и для контроля обстановки других населенных пунктов, а результаты расчетов данной работы, в дальнейшем могут быть использованы для сравнения с результатами биофизических измерений.\u0000 In this study, Bodene village in Beskaragai district of East Kazakhstan Oblast of Kazakhstan was chosen as an object of study because it is close to the site of the nuclear test site and has a large accumulated array of data on the radioecological situation. As part of the study, a questionnaire survey was conducted, which made it possible to compile statistics on the population of the village, as well as on the characteristics of the diet and activities of long-term residents. The work included modeling of technogenic radionuclide intake into a human organism living and carrying out agricultural activity on the territory affected by the Semipalatinsk test site. Calculations are given for intake of radionuclides with plant and animal food, as well as by inhalation. These studies allow to make an assessment and forecast of radiation burden. At the same time it is important to note that no exceedances ofradiation norms have been detected. Contaminated food is the main risk factor for human health, therefore more attention should be paid to monitoring of radiation burden in radioecologically unfavorable areas. The methodology of the study can also be used to control the situation of other settlements, and the results of calculations of this work, in the future, can be used for comparison with the results of biophysical measurements.","PeriodicalId":200421,"journal":{"name":"Вестник КРАУНЦ. Физико-математические науки","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132508866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Об одной краевой задаче для уравнения нечетного порядка с кратными характеристиками 有多重特征的奇数方程的边缘问题
Вестник КРАУНЦ. Физико-математические науки Pub Date : 2022-05-20 DOI: 10.26117/2079-6641-2022-38-1-28-39
O.T. Kurbanov
{"title":"Об одной краевой задаче для уравнения нечетного порядка с кратными характеристиками","authors":"O.T. Kurbanov","doi":"10.26117/2079-6641-2022-38-1-28-39","DOIUrl":"https://doi.org/10.26117/2079-6641-2022-38-1-28-39","url":null,"abstract":"A nonlinear boundary value problem for a third-order nonlinear equation with multiple characteristics is studied in the article in a curvilinear domain. The unique solvability of the problem is proved. The uniqueness of the solution to the boundary value problem is proved by the energy integral method using some elementary inequalities. An auxiliary problem is considered for the existence of a solution, for which the Green function is constructed. By solving an auxiliary problem, the original problem is reduced to a system of Hammerstein integral equations. The solvability of a nonlinear system is proved by the contracting mapping method.\u0000 В статье исследуется нелинейная краевая задача для нелинейного уравнения третьего порядка с кратными характеристиками в криволинейной области. Доказана однозначная разрешимость задачи. Единственность решения краевой задачи доказывается методом интеграла энергии с использованием некоторых элементарных неравенств. Рассмотрена вспомогательная задача существования решения, для которой строится функция Грина. Путем решения вспомогательной задачи исходная задача сводится к системе интегральных уравнений Гаммерштейна. Разрешимость нелинейной системы доказывается методом сжимающих отображений.","PeriodicalId":200421,"journal":{"name":"Вестник КРАУНЦ. Физико-математические науки","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121557438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On some unknown results related to the nontrivial properties of ordinary triangles. Part 1 关于普通三角形非平凡性质的一些未知结果。第1部分
Вестник КРАУНЦ. Физико-математические науки Pub Date : 2021-12-27 DOI: 10.26117/2079-6641-2021-37-4-216-234
Б.П. Федоров, C.Б. Богданова, Сергей О. Гладков
{"title":"On some unknown results related to the nontrivial properties of ordinary triangles. Part 1","authors":"Б.П. Федоров, C.Б. Богданова, Сергей О. Гладков","doi":"10.26117/2079-6641-2021-37-4-216-234","DOIUrl":"https://doi.org/10.26117/2079-6641-2021-37-4-216-234","url":null,"abstract":"В работе приведено подробное решение множества оригинальных задач, сформулированых в свое время Б. П. Федоровым, и относящихся к разнообразным нетривиальным свойствам евклидовых треугольников. При изложении материала используется некоторая общепринятая, но не слишком распространенная в современных учебниках по геометрии терминология, необходимая для понимания и более углубленного восприятия описанных в работе задач.\u0000 In this paper, it was given a detailed solution of many original problems, formulated by Fedorov B. P. some time ago. These problems belong to the various nontrivial properties of Euclidean triangles. When presenting the material, it has been used some universally accepted, but not very popular in modern textbooks on geometry terminology, which is nesessary for understanding and in-depth perception of the problems described in the paper.","PeriodicalId":200421,"journal":{"name":"Вестник КРАУНЦ. Физико-математические науки","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122126558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Features of the next reversal of the geomagnetic field 下一次地磁场反转的特征
Вестник КРАУНЦ. Физико-математические науки Pub Date : 2021-12-27 DOI: 10.26117/2079-6641-2021-37-4-131-140
Виталий Вадимович Кузнецов
{"title":"Features of the next reversal of the geomagnetic field","authors":"Виталий Вадимович Кузнецов","doi":"10.26117/2079-6641-2021-37-4-131-140","DOIUrl":"https://doi.org/10.26117/2079-6641-2021-37-4-131-140","url":null,"abstract":"В статье обсуждаются возможность проявления очередной инверсии геомагнитного поля (ГМП) и его некоторые особенности. Дипольное поле (ДП) приблизится к нулевой отметке, которую достигнет примерно в 3500 году. С 1500 года, на фоне понижения ДП происходит рост октупольного и квадрупольного компонент ГМП и их суммы (О+К). ДП, согласно нашей модели геомагнетизма, после прохождения нулевой отметки начнет расти с обратным знаком и противодействовать (О+К) полю, понижая его уровень до нуля. В этот момент (≈ 6000 год) поле (N) будет иметь минимальную величину. Затем начнется рост ДП обратного значения (R). Инверсия закончится при достижении этим полем устойчивой величины.\u0000 The possibility of a new reversal of the geomagnetic field (GMF) and some of its features are discussed. In 3500 the dipole field (DF) will become near zero. Since 1500, along with the decrease of DF, there has been an increase of the octupole and quadrupole components of the GMF as well as their sum (O+Q). According to our model of geomagnetism, after passing the zero the reversing DF will start its rise counteracting the (O+Q) field and lowering its value to zero. In about 6000 the total field DF+O+Q (N) will be minimum. After DF reaches a stable value the reversal will complete.","PeriodicalId":200421,"journal":{"name":"Вестник КРАУНЦ. Физико-математические науки","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131204044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Initial data problem for an equation related to a peridynamic model in a two-dimensional domain 二维区域中周期动力学模型方程的初始数据问题
Вестник КРАУНЦ. Физико-математические науки Pub Date : 2021-12-27 DOI: 10.26117/2079-6641-2021-37-4-45-52
А.В. Юлдашева
{"title":"Initial data problem for an equation related to a peridynamic model in a two-dimensional domain","authors":"А.В. Юлдашева","doi":"10.26117/2079-6641-2021-37-4-45-52","DOIUrl":"https://doi.org/10.26117/2079-6641-2021-37-4-45-52","url":null,"abstract":"В настоящей работе доказывается единственность и существование решения задачи Коши для интегро-дифференциального уравнения, связанного с перидинамической моделью механики твёрдого тела с двумя пространственными переменными.\u0000 In this paper the uniqueness and existence of a solution of Cauchy problem for an integro-differential equation associated with a peridynamic model of solid mechanics in a two-dimensional domain are proved.","PeriodicalId":200421,"journal":{"name":"Вестник КРАУНЦ. Физико-математические науки","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115029362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inner boundary value problem with an integral condition for fractional diffusion equation 分数阶扩散方程积分条件下的内边值问题
Вестник КРАУНЦ. Физико-математические науки Pub Date : 2021-12-27 DOI: 10.26117/2079-6641-2021-37-4-24-29
Ф.М. Лосанова
{"title":"Inner boundary value problem with an integral condition for fractional diffusion equation","authors":"Ф.М. Лосанова","doi":"10.26117/2079-6641-2021-37-4-24-29","DOIUrl":"https://doi.org/10.26117/2079-6641-2021-37-4-24-29","url":null,"abstract":"В данной работе рассматривается нелокальная внутреннекраевая задача для уравнения дробной диффузии с оператором дробного дифференцирования в смысле Римана-Лиувилля с интегральными условиями. Исследуемая задача эквиваленто сведена к системе двух интегральных уравнений Вольтерра второго рода. Доказана теорема существования и единственности решения поставленной задачи.\u0000 In this paper, we consider a nonlocal interior boundary value problem for the fractional diffusion equation with a fractional differentiation operator in the sense of Riemann-Liouville with integral conditions. The problem under study is equivalently reduced to a system of two Volterra integral equations of the second kind. The theorem of existence and uniqueness of the solution of the posed problem is proved.","PeriodicalId":200421,"journal":{"name":"Вестник КРАУНЦ. Физико-математические науки","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121952531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Влияние фрактальной структуры на электрическое поле в грозовых облаках 风暴云中的分形结构对电场的影响
Вестник КРАУНЦ. Физико-математические науки Pub Date : 2021-12-27 DOI: 10.26117/2079-6641-2021-37-4-84-91
T. S. Kumykov
{"title":"Влияние фрактальной структуры на электрическое поле в грозовых облаках","authors":"T. S. Kumykov","doi":"10.26117/2079-6641-2021-37-4-84-91","DOIUrl":"https://doi.org/10.26117/2079-6641-2021-37-4-84-91","url":null,"abstract":"The paper considers the degree of fractal structure impact on the electric field intensity inside thunderstorm clouds using the apparatus of fractional integrodifferentiation. We propose a mathematical model of intensity dynamics of a static electric field in the thunderstorm clouds, taking into account media with fractal dimension. The results obtained confirm the close connection of electrophysical processes in thunderclouds with the fractal medium itself.\u0000 В статье с помощью аппарата дробного интегро-дифференцирования рассматривается степень влияния фрактальной структуры на напряженность электрического поля внутри грозовых облаков. Предлагается математическая модель динамики напряженности статического электрического поля в грозовых облаках с учетом сред с фрактальной размерностью. Полученные результаты подтверждают тесную связь электрофизических процессов в грозовых облаках с самой фрактальной средой\u0000 В статье с помощью аппарата дробного интегро-дифференцирования рассматривается степень влияния фрактальной структуры на напряженность электрического поля внутри грозовых облаков. Предлагается математическая модель динамики напряженности статического электрического поля в грозовых облаках с учетом сред с фрактальной размерностью. Полученные результаты подтверждают тесную связь электрофизических процессов в грозовых облаках с самой фрактальной средой.","PeriodicalId":200421,"journal":{"name":"Вестник КРАУНЦ. Физико-математические науки","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123185865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信