{"title":"分数阶扩散方程积分条件下的内边值问题","authors":"Ф.М. Лосанова","doi":"10.26117/2079-6641-2021-37-4-24-29","DOIUrl":null,"url":null,"abstract":"В данной работе рассматривается нелокальная внутреннекраевая задача для уравнения дробной диффузии с оператором дробного дифференцирования в смысле Римана-Лиувилля с интегральными условиями. Исследуемая задача эквиваленто сведена к системе двух интегральных уравнений Вольтерра второго рода. Доказана теорема существования и единственности решения поставленной задачи.\n In this paper, we consider a nonlocal interior boundary value problem for the fractional diffusion equation with a fractional differentiation operator in the sense of Riemann-Liouville with integral conditions. The problem under study is equivalently reduced to a system of two Volterra integral equations of the second kind. The theorem of existence and uniqueness of the solution of the posed problem is proved.","PeriodicalId":200421,"journal":{"name":"Вестник КРАУНЦ. Физико-математические науки","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inner boundary value problem with an integral condition for fractional diffusion equation\",\"authors\":\"Ф.М. Лосанова\",\"doi\":\"10.26117/2079-6641-2021-37-4-24-29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"В данной работе рассматривается нелокальная внутреннекраевая задача для уравнения дробной диффузии с оператором дробного дифференцирования в смысле Римана-Лиувилля с интегральными условиями. Исследуемая задача эквиваленто сведена к системе двух интегральных уравнений Вольтерра второго рода. Доказана теорема существования и единственности решения поставленной задачи.\\n In this paper, we consider a nonlocal interior boundary value problem for the fractional diffusion equation with a fractional differentiation operator in the sense of Riemann-Liouville with integral conditions. The problem under study is equivalently reduced to a system of two Volterra integral equations of the second kind. The theorem of existence and uniqueness of the solution of the posed problem is proved.\",\"PeriodicalId\":200421,\"journal\":{\"name\":\"Вестник КРАУНЦ. Физико-математические науки\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Вестник КРАУНЦ. Физико-математические науки\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26117/2079-6641-2021-37-4-24-29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Вестник КРАУНЦ. Физико-математические науки","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26117/2079-6641-2021-37-4-24-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inner boundary value problem with an integral condition for fractional diffusion equation
В данной работе рассматривается нелокальная внутреннекраевая задача для уравнения дробной диффузии с оператором дробного дифференцирования в смысле Римана-Лиувилля с интегральными условиями. Исследуемая задача эквиваленто сведена к системе двух интегральных уравнений Вольтерра второго рода. Доказана теорема существования и единственности решения поставленной задачи.
In this paper, we consider a nonlocal interior boundary value problem for the fractional diffusion equation with a fractional differentiation operator in the sense of Riemann-Liouville with integral conditions. The problem under study is equivalently reduced to a system of two Volterra integral equations of the second kind. The theorem of existence and uniqueness of the solution of the posed problem is proved.