{"title":"Overview of current research on traditional Chinese medicine in skin disease treatment: a bibliometric analysis from 2014 to 2024.","authors":"Lin Li, Lanfang Zhang, Yuan Li, Yuan Cai, Xue Wen, Chenjie Zheng, Chuyan Wu, Yunlei Bao, Feng Jiang, Nana Sun, Ni Zeng","doi":"10.1080/13880209.2024.2443415","DOIUrl":"10.1080/13880209.2024.2443415","url":null,"abstract":"<p><strong>Context: </strong>Recent research has revealed significant advancements in the field of traditional Chinese medicine (TCM) for skin diseases. However, there is a lack of visualization analysis within this research domain.</p><p><strong>Objective: </strong>To analyze the research directions and advancements in TCM research in skin diseases.</p><p><strong>Materials and methods: </strong>Publications related to TCM in skin diseases from 2014 to 2024 were searched on the Web of Science Core Collection (WoSCC), VOSviewer, CiteSpace, and the R package \"bibliometrix\" were employed to visualize and analyze the retrieved data.</p><p><strong>Results: </strong>The study included 527 articles published in 25 countries. The number of publications consistently increased from 2014 to 2024. The Guangzhou University of Chinese Medicine was the most noteworthy institution in this field. Among the journals in this domain, the <i>Journal of Ethnopharmacology</i> was the most popular, and most frequently co-cited journal. Chuanjian Lu published the most papers and Yin-Ku Lin was the most frequently co-cited author. Among keywords, \"psoriasis\" appeared the most frequently. Additionally, several emerging research hotspots were identified, indicating the transition from traditional Chinese therapies to investigations of the molecular interactions and network pharmacology of Chinese herbs in treatment of skin diseases over the past decade.</p><p><strong>Discussion and conclusion: </strong>This visualization analysis summarizes the research directions and advancements in TCM research on skin diseases. It presents a comprehensive examination of the latest research frontiers and trends and serves as a valuable reference for scholars engaged in the study of TCM research.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"63 1","pages":"27-41"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142915281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Apium graveolens</i> L. alleviates acute lung injury in human A-549 cells by reducing NF-κB and NLRP3 inflammasome signaling.","authors":"Lan-Chi Hsieh, Shu-Ling Hsieh, Tsu-Ni Ping, Yi-Chun Huang, Ssu-Jung Lin, Hsing-Yu Chi, Chih-Chung Wu","doi":"10.1080/13880209.2024.2433994","DOIUrl":"10.1080/13880209.2024.2433994","url":null,"abstract":"<p><strong>Background: </strong><i>Apium graveolens</i> L. (celery) is a dietary vegetable with anti-inflammatory properties. It has the potential to treat acute lung injury (ALI) caused by COVID-19 or other diseases.</p><p><strong>Objective: </strong>To investigate the effects of <i>Apium graveolens</i> water extract (AGWE) on ALI in human lung A-549 cells induced by lipopolysaccharide (LPS).</p><p><strong>Materials and methods: </strong>A-549 cells were treated with AGWE for 24 h and then stimulated with 10 μg/mL LPS for another 24 h. The effects of AGWE on cell viability, the inflammatory response, oxidative stress, and apoptosis and their regulatory factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling activation were analyzed.</p><p><strong>Results: </strong>Treatment with 5-50 μg/mL AGWE reversed the decrease in cell viability caused by LPS (<i>p</i> < 0.05). AGWE can reduce interleukin (IL)-1β, IL-6, IL-18, and TNF-α levels; their EC<sub>50</sub> values are 61.4, 65.7, 37.8, and 79.7 μg/mL, respectively. AGWE can reduce reactive oxygen species and thiobarbituric acid reactive substances in A-549 cells induced by LPS. AGWE also reduced the levels of apoptosis (EC50 of 74.8 μg/mL) and its regulators (Bid; Caspase-9, -8, and -3; Bax) and increased the levels of the mitochondrial membrane potential in A-549 cells induced by LPS. AGWE can also decrease the protein levels of NLRP3 and Caspase-1 and the activation of NF-κB signaling in A-549 cells induced by LPS.</p><p><strong>Conclusions: </strong>These results show that 10 and 50 μg/mL AGWE can reduce the acute inflammation induced by LPS by reducing NF-κB and NLRP3 inflammasome signaling and mitochondria-dependent apoptosis pathways.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"63 1","pages":"1-13"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Total flavonoids of litchi seed inhibit breast cancer metastasis by regulating the PI3K/AKT/mTOR and MAPKs signaling pathways.","authors":"Xin Yang, Shoushi Liu, Ying Liu, Yuanshuo Wang, Dianxin Cui, Taijin Lan, Dan Zhu, Zhiheng Su, Erwei Hao, Lilan Qin, Hongwei Guo","doi":"10.1080/13880209.2025.2488135","DOIUrl":"https://doi.org/10.1080/13880209.2025.2488135","url":null,"abstract":"<p><strong>Context: </strong>Total flavonoids from <i>Litchi chinensis</i> Sonn. (Sapindaceae) seeds (TFLS) effectively attenuate stem cell-like properties in breast cancer cells. However, their pharmacological effects and mechanisms in suppressing breast cancer metastasis remain unclear.</p><p><strong>Objective: </strong>This study aimed to elucidate the inhibitory effects and underlying mechanisms of TFLS on breast cancer metastasis.</p><p><strong>Materials and methods: </strong>The antiproliferative, migratory, and invasive activities of breast cancer cells following TFLS treatment were evaluated using CCK-8, wound-healing, and transwell assays. The epithelial-mesenchymal transition (EMT) biomarkers were evaluated <i>via</i> Western blot analysis. The anti-metastatic effects of TFLS were further validated <i>in vivo</i> using zebrafish and mouse models. Network pharmacology methodology was utilized to predict potential targets and signaling pathways, which were subsequently corroborated by Western blot. Potential active compounds were identified through molecular docking, and the chemical constituents of TFLS were analyzed and characterized using UPLC-QTOF/MS.</p><p><strong>Results: </strong>TFLS suppressed the proliferation of MDA-MB-231 and MDA-MB-468 cells, with IC<sub>50</sub> values of 44.47 μg/mL and 37.35 μg/mL at 72 h, respectively. It effectively suppressed breast cancer metastasis <i>in vitro</i>, demonstrated by a marked reduction in cellular motility and invasiveness, alongside the reversal of EMT. Consistent with pathway enrichment analysis, network pharmacology revealed that TFLS reduced the phosphorylation levels of PI3K, AKT, mTOR, JNK, ERK, and p38 in breast cancer cells. Molecular docking identified seven potential active ingredients, and UPLC-MS/MS confirmed the presence of key compounds, including procyanidin A2.</p><p><strong>Discussion and conclusion: </strong>TFLS effectively inhibits breast cancer cell proliferation, migration, and invasion <i>in vitro</i> by reversing the EMT phenotype, while suppressing metastasis <i>in vivo</i>. These effects are likely mediated <i>via</i> the attenuation of the PI3K/AKT/mTOR and MAPK signaling pathways.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"63 1","pages":"229-249"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144015311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmaceutical BiologyPub Date : 2025-12-01Epub Date: 2025-05-02DOI: 10.1080/13880209.2025.2498169
Hangjie Wang, Wei Li, Junyan Chen, Rong Chen, Yuwei Qi, Linshuang Shen, Kaidi Chen, Lewei Dai, Yuxin Sheng, An Wang, Hong Wang, Chujian Chen, Xiao Cheng, Mancang Gu
{"title":"Delivery of small interfering RNA through lyophilized natural lipid nanoparticles: effects of natural lipid selection.","authors":"Hangjie Wang, Wei Li, Junyan Chen, Rong Chen, Yuwei Qi, Linshuang Shen, Kaidi Chen, Lewei Dai, Yuxin Sheng, An Wang, Hong Wang, Chujian Chen, Xiao Cheng, Mancang Gu","doi":"10.1080/13880209.2025.2498169","DOIUrl":"https://doi.org/10.1080/13880209.2025.2498169","url":null,"abstract":"<p><strong>Context: </strong>Lipid nanoparticles (LNPs) are the primary non-viral vectors for siRNA delivery. However, synthetic lipids face issues, such as low lysosomal escape efficiency and high cost.</p><p><strong>Objective: </strong>This study aimed to use three natural lipids to construct LNPs, optimize their preparation and freeze-drying processes, and evaluate their siRNA delivery efficiency <i>in vitro</i>.</p><p><strong>Materials and methods: </strong><i>Coix</i> seed lipid [<i>Coix lacryma-jobi</i> L. var. <i>mayuen</i> (Roman.) Stapf (Poaceae), CSL], <i>Brucea javanica</i> seed lipid [<i>Brucea javanica</i> (L.) Merr. (Simaroubaceae), BJL], and Soybean oil [<i>Glycine max</i> (L.) Merr. (Fabaceae), SO] were used to construct LNPs. The Z-average size, zeta potential, Polymer Dispersity Index, and N/P ratio of the LNPs were characterized. Transmission electron microscope was used for morphology observation and the MTS assay for cytotoxicity. Confocal laser scanning microscope assessed cell uptake, lysosomal escape, and co-localization of lipid droplets. The efficiency of siRNA knockdown was evaluated in three cells using qPCR and Western blot. The freeze-drying processes were optimized.</p><p><strong>Results: </strong>The optimal LNPs exhibited a size of 160-180 nm, zeta of 44-50 mV, and PDI of <0.2. At 200 μg/mL, the LNPs did not affect cell viability. CSL-LNPs, BJL-LNPs, and SO-LNPs reduced KRAS<sup>G12D</sup> mRNA levels in AsPC-1 cells by 67.87 ± 3.89, 47.18 ± 7.65, and 42.52 ± 8.90%, respectively. Freeze-dried LNPs retained their basic physical properties and the three LNPs reducing KRAS<sup>G12D</sup> mRNA levels by 58.47 ± 4.00, 51.83 ± 4.57, and 38.00 ± 4.89%, respectively.</p><p><strong>Discussion and conclusion: </strong>Natural lipids are promising components for LNPs construction, offering new avenues for siRNA delivery in gene therapy.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"63 1","pages":"343-356"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12051533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144007342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmaceutical BiologyPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/13880209.2025.2492872
Jin-Lu Huang, Chen-Yue Tang, Yao Fu, Li-Li Wan, Jie Li, Xi-Peng Sun, Jia-Lu Hu, Yue-Yi Zhang, Li-Ying Qu, Miao-Jia Fu, Yuan-Yuan Zhang, Le Ma, Cheng Guo, Jiu-Geng Chen
{"title":"Involvement of ionomic metabolism of both the cerebrospinal fluid and the spinal cord in the analgesic efficacy of matrine in rats.","authors":"Jin-Lu Huang, Chen-Yue Tang, Yao Fu, Li-Li Wan, Jie Li, Xi-Peng Sun, Jia-Lu Hu, Yue-Yi Zhang, Li-Ying Qu, Miao-Jia Fu, Yuan-Yuan Zhang, Le Ma, Cheng Guo, Jiu-Geng Chen","doi":"10.1080/13880209.2025.2492872","DOIUrl":"https://doi.org/10.1080/13880209.2025.2492872","url":null,"abstract":"<p><strong>Context: </strong>Matrine has antinociceptive properties, and spinal cord ionomic changes are involved in bone cancer pain.</p><p><strong>Objective: </strong>To investigate the relationship between ionomic metabolism in cerebrospinal fluid (CSF) and spinal cord and matrine's analgesic efficacy.</p><p><strong>Materials and methods: </strong>The antinociceptive effects of matrine were identified in rats <i>via</i> intraperitoneal (i.p.) injection using the tail-immersion and formalin tests. Pharmacodynamic parameters for matrine against formalin-induced pain were calculated with nonlinear regression analysis. Inductively coupled plasma mass spectrometry (ICP-MS) technology was utilized to detect contents of the ionome in CSF and spinal cord. Variations in ionomic metabolism in different treated groups were examined using Pearson's correlation coefficients and principal component analysis (PCA).</p><p><strong>Results: </strong>In the tail-immersion test, matrine significantly prolonged tail-flick latency in rats. Matrine also dose-dependently yielded analgesia against formalin-induced biphasic pain, with an onset at around 10 min post-injection and a duration of 100 min. The ED<sub>50</sub> and E<sub>max</sub> values were 19.01 mg/kg and 71.86% for phase I and 40.30 mg/kg and 81.51% for phase II, respectively. Pearson's correlation coefficient study and PCA revealed significant reprogramming of ionomic metabolism in the CSF and the spinal cord in the NM (normal saline + matrine), NF (normal saline + formalin), and FM (formalin + matrine) groups, compared to the NN (normal saline + normal saline) group.</p><p><strong>Discussion and conclusions: </strong>These findings broaden the known analgesic spectrum of matrine and provide novel insights into the involvement of ionomic metabolism in its analgesic efficacy.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"63 1","pages":"275-287"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020144/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144037418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Naringenin inhibits ferroptosis to reduce radiation-induced lung injury: insights from network Pharmacology and molecular docking.","authors":"Junlin Jiang, Xianhui Deng, Chengkai Xu, Yaxian Wu, Jianfeng Huang","doi":"10.1080/13880209.2025.2465312","DOIUrl":"10.1080/13880209.2025.2465312","url":null,"abstract":"<p><strong>Context: </strong>Naringenin is a natural flavanone with potent pharmacological properties. It has demonstrated therapeutic potential in treating various diseases and organ injuries, including radiation-induced lung injury (RILI). Ferroptosis is a newly type of cell death, and naringenin has been shown to attenuates ferroptosis.</p><p><strong>Objective: </strong>To evaluate the inhibitory effect and molecular mechanism of naringenin on ferroptosis during RILI process.</p><p><strong>Materials & methods: </strong>Firstly, BEAS-2B and HUVECs cells were pre-incubated with naringenin for 1 h prior to 8 Gy of X-ray irradiation to evaluate oxidative stress, inflammation, and the mRNA levels of ferroptosis-related genes. Next, target genes of naringenin, RILI, and ferroptosis were identified using the TCMSP, SwissTargetPrediction, and GeneCards databases. The target network was constructed with Cytoscape and STRING. Finally, the core target genes were identified through <i>in vitro</i> experiments by qRT-PCR, western blot and immunofluorescence staining.</p><p><strong>Results: </strong>Naringenin effectively reduced radiation-induced increasement of oxidative stress, inflammation, and ferroptosis markers in both cell lines. Network pharmacology identified 14 target genes, with prostaglandin endoperoxide synthase (PTGS2) and Valosin-containing protein (VCP) mRNA levels being prominent, which were crucial for ferroptosis regulation. Molecular docking revealed strong binding interactions between naringenin and the two target proteins. Subsequently, experimental validation confirmed that naringenin reduced the elevated levels of PTGS2 and VCP induced by radiation.</p><p><strong>Discussion & conclusion: </strong>Naringenin alleviates radiation-induced lung damage by inhibiting ferroptosis, with PTGS2 and VCP emerging as potential therapeutic targets.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"63 1","pages":"1-10"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmaceutical BiologyPub Date : 2025-12-01Epub Date: 2025-02-25DOI: 10.1080/13880209.2025.2469607
Zhebin Xiang, Bo Ma, Xiujun Pei, Wenjie Wang, Weilun Gong
{"title":"Mechanism of action of genistein on breast cancer and differential effects of different age stages.","authors":"Zhebin Xiang, Bo Ma, Xiujun Pei, Wenjie Wang, Weilun Gong","doi":"10.1080/13880209.2025.2469607","DOIUrl":"10.1080/13880209.2025.2469607","url":null,"abstract":"<p><strong>Context: </strong>Genistein, a soy-derived isoflavone, exhibits structural similarities with 17β-estradiol and demonstrates antioxidant, anti-inflammatory, and estrogenic properties. Despite its low bioavailability limiting its clinical application, it shows potential for breast cancer prevention and treatment.</p><p><strong>Objective: </strong>This review aims to summarize the pharmacological effects and molecular mechanisms of genistein in breast cancer, focusing on its therapeutic potential, strategies to overcome bioavailability limitations, and its role in personalized medicine. Differential impacts among population subgroups are also discussed.</p><p><strong>Methods: </strong>A systematic review was conducted using PubMed, ScienceDirect, and Google Scholar databases. Studies were selected based on their focus on genistein's mechanisms of action, strategies to enhance its bioavailability, and interactions with other therapies.</p><p><strong>Results: </strong>Genistein exerted anticancer effects by modulating estrogen receptor β (ERβ), inhibiting angiogenesis, arresting the cell cycle, and inducing apoptosis. Its antioxidant properties help mitigate tumor-associated oxidative stress. Bioavailability enhancement strategies, such as nanoparticle and lipid-based formulations, show promise. Age-dependent effects were evident, with distinct responses observed in prepubertal, menopausal, and postmenopausal populations, underscoring its potential for personalized therapies. Furthermore, genistein influences epigenetic modifications, including DNA methylation and miRNA expression, bolstering its anticancer efficacy.</p><p><strong>Conclusion: </strong>Genistein is a promising candidate for breast cancer therapy, particularly for personalized treatment. Strategies to enhance bioavailability and further clinical research are essential to optimize its therapeutic potential and evaluate its efficacy in combination therapies.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"63 1","pages":"141-155"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Harmine derivative H-2-168 induces the death of <i>Echinococcus granulosus</i> by regulating mitochondrial fusion and fission.","authors":"Yuehong Gong, Meiling Zhao, Meichi Pan, Yicong Zhao, Junpeng Liu, Hao Wen, Jianhua Wang","doi":"10.1080/13880209.2025.2485898","DOIUrl":"10.1080/13880209.2025.2485898","url":null,"abstract":"<p><strong>Context: </strong>H-2-168 has pharmacological effects similar to those of harmine, with less toxicity. The health of cells and organisms depends on a delicate balance between mitochondrial fusion and fission.</p><p><strong>Objective: </strong>This study investigated the roles of H-2-168 and mitochondrial fusion and fission in <i>Echinococcus granulosus</i>.</p><p><strong>Materials and methods: </strong>Notably, <i>E. granulosus</i> were isolated from fresh sheep livers, and then treated with H-2-168 (25 μg/mL), mitochondrial division inhibitor 1 (Mdivi-1, 25 μg/mL) or the combination of H-2-168:Mdivi-1 (25 μg/mL:12.5 μg/mL). After 24 h of culture, the indices related to <i>E. granulosus</i> were measured. Additionally, Drp1 was knocked down to explore its effects on <i>E. granulosus</i> growth.</p><p><strong>Results: </strong>The EC<sub>50</sub> values of H-2-168, Mdivi-1 and H-2-168:Mdivi-1 against <i>E. granulosus</i> were 44.171, 117.882 and 32.924 μg/mL, respectively. Compared with H-2-168 or Mdivi-1, the combination of H-2-168 and Mdivi-1 showed better inhibitory effects on <i>E. granulosus</i> viability, as well as increased levels of ROS and LDH, decreased ATP levels, inhibited mitochondrial activity and reduced mitochondrial membrane potential (<i>p</i> < 0.05), with the upregulation of Caspase-3, Cyt-c, Drp1, Fis1 and downregulation of Bcl-2, Mfn2 and OPA1. Additionally, <i>Drp1</i> knockdown was successfully performed in <i>E. granulosus</i>, which significantly inhibited <i>E. granulosus</i> viability (<i>p</i> < 0.05) and further downregulated Mfn2 expression induced by H-2-168.</p><p><strong>Discussion and conclusion: </strong><i>Drp1</i> is closely associated with mitochondrial fusion and fission, and H-2-168 may promote <i>E. granulosus</i> death through disrupting the balance between mitochondrial fusion and fission.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"63 1","pages":"188-200"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Qing-Xin-Jie-Yu Granule attenuates myocardial infarction-induced inflammatory response by regulating the MK2/TTP pathway.","authors":"Jianghan Qi, Xiaoyao Gao, Ying Han, Meiling Yang, Chenyi Wei, Ling Zhang, Jianfeng Chu","doi":"10.1080/13880209.2025.2467377","DOIUrl":"10.1080/13880209.2025.2467377","url":null,"abstract":"<p><strong>Context: </strong>Qing-Xin-Jie-Yu Granule (QXJYG) has shown promise in the treatment of myocardial infarction. However, the mechanism of action of QXJYG underlying its anti-inflammation remain unknown.</p><p><strong>Objective: </strong>The study aimed to evaluate the effectiveness and mechanism of QXJYG in a mouse model of myocardial infarction and hypoxia-induced H9C2 cells.</p><p><strong>Materials and methods: </strong>Myocardial infarction was induced in mice <i>via</i> left anterior descending coronary artery ligation, and hypoxia-induced H9C2 cells was served as the <i>in vitro</i> model. The cardiac function was evaluated by echocardiography, while myocardial tissue pathology was examined using HE and Masson's trichrome staining. Changes in serum markers of cardiac injury were measured using ELISA kits. The levels of inflammatory cytokines in both the serum and cardiac tissue were quantified using the Bio-Plex Pro Mouse Chemokine assay, and hypoxia-induced inflammatory factors in H9C2 cells were assessed by RT-qPCR. Additionally, western blot analysis was conducted to evaluate the expression of proteins related to the MK2/TTP signaling pathway both <i>in vivo</i> and <i>in vitro</i> experiments.</p><p><strong>Results: </strong>QXJYG significantly enhanced cardiac function in mice with myocardial infarction, as evidenced by improved myocardial tissue structure, reduced collagen fiber deposition, and lowered serum levels of creatine kinase isoenzyme MB (CK-MB), cardiac Troponin T (cTnT), and brain Natriuretic Peptide (BNP). QXJYG may reduce the expression of inflammatory factors in both the heart and serum of myocardial infarction-induced mice and attenuate hypoxia-induced levels of inflammatory factors in cardiomyocytes by decreasing the ratio of p-MK2/MK2 and increasing the protein expression of TTP.</p><p><strong>Discussion and conclusions: </strong>QXJYG improved cardiac function and reduced injury, fibrosis, and inflammation after myocardial infarction, likely through modulation of the MK2/TTP signaling pathway.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"63 1","pages":"128-140"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmaceutical BiologyPub Date : 2025-12-01Epub Date: 2025-01-02DOI: 10.1080/13880209.2024.2443424
Huizi Ye, Yufang Wang, Xue Zhang, Lin Yang, Banglan Cai, Denghai Zhang, Bin Peng
{"title":"Characterization of global research trends and prospects on celastrol, a principal bioactive ingredient of <i>Tripterygium wilfordii</i> Hook F: bibliometric analysis.","authors":"Huizi Ye, Yufang Wang, Xue Zhang, Lin Yang, Banglan Cai, Denghai Zhang, Bin Peng","doi":"10.1080/13880209.2024.2443424","DOIUrl":"10.1080/13880209.2024.2443424","url":null,"abstract":"<p><strong>Context: </strong>Celastrol, acknowledged as a prominent exemplar of the potential for transforming traditional medicinal compounds into contemporary pharmaceuticals, has garnered considerable attention owing to its extensive pharmacological activities. The increasing volume of publications concerning celastrol highlights its importance in current scientific inquiry. Despite the growing interest in this compound, a bibliometric analysis focused on this subject remains to be undertaken.</p><p><strong>Objective: </strong>Our study explored a bibliometric approach to identify and characterize global research trends and frontiers related to celastrol, including mapping research outputs, influential contributors, and thematic areas, as well as highlighting gaps and opportunities for future investigations.</p><p><strong>Materials and methods: </strong>In this study, we utilized the Web of Science Core Collection (WoSCC) to source and review articles related to celastrol published from 1997 to 2023. The bibliometric analysis was conducted using the R package 'Bibliometrix,' supplemented by visualization tools including CiteSpace, VOSviewer, and GraphPad Prism 10.</p><p><strong>Results: </strong>Celastrol related research papers have exhibited an upward trend annually and can be categorized into three distinct phases, each highlighting different areas of focus. China, the United States, and South Korea rank as the top three nations for publication volume, with varied research interests across these countries. Several prolific research teams have emerged, each with distinct areas of interest. Examining the primary research domains of celastrol (anti-inflammatory, anticancer, and toxicity) reveals a notable intersection between the first two domains.</p><p><strong>Discussion and conclusions: </strong>The scope and depth of celastrol research have been steadily expanding, with regional and team-specific variations. Key research areas include anti-inflammatory, anticancer, and toxicity studies. Future research is expected to focus on enhancing the effectiveness and reducing the toxicity of celastrol. Meanwhile, given the multi-target characteristics of celastrol's effects, integrating methods such as network biology and molecular simulation will provide a novel perspective for celastrol research.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"63 1","pages":"15-26"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142915259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}