Rong Cong, Can Lu, Xinying Li, Zhijie Xu, Yaqin Wang, Shusen Sun
{"title":"Tumor organoids in cancer medicine: from model systems to natural compound screening.","authors":"Rong Cong, Can Lu, Xinying Li, Zhijie Xu, Yaqin Wang, Shusen Sun","doi":"10.1080/13880209.2025.2458149","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening.</p><p><strong>Objective: </strong>This review addresses the challenges in developing <i>in vitro</i> models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies.</p><p><strong>Methods: </strong>This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded.</p><p><strong>Results and conclusions: </strong>The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"63 1","pages":"89-109"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13880209.2025.2458149","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context: The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening.
Objective: This review addresses the challenges in developing in vitro models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies.
Methods: This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded.
Results and conclusions: The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.
期刊介绍:
Pharmaceutical Biology will publish manuscripts describing the discovery, methods for discovery, description, analysis characterization, and production/isolation (including sources and surveys) of biologically-active chemicals or other substances, drugs, pharmaceutical products, or preparations utilized in systems of traditional medicine.
Topics may generally encompass any facet of natural product research related to pharmaceutical biology. Papers dealing with agents or topics related to natural product drugs are also appropriate (e.g., semi-synthetic derivatives). Manuscripts will be published as reviews, perspectives, regular research articles, and short communications. The primary criteria for acceptance and publication are scientific rigor and potential to advance the field.